nesticot commited on
Commit
e9bd963
·
1 Parent(s): 87031d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -575,9 +575,13 @@ def server(input, output, session):
575
 
576
  if df_combined_t.values[[10],[1]] < 0:
577
  if df_combined_t.values[[10],[0]] < 0:
578
- cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
579
- norm = Normalize(vmin=-1.2, vmax=-0.8)
580
- colour_df[[10],[0]] = tuple(cmap_flip(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
 
 
 
 
581
  else:
582
  norm = Normalize(vmin=0.8, vmax=1.2)
583
  colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
@@ -586,14 +590,16 @@ def server(input, output, session):
586
 
587
  if df_combined_t.values[[10],[2]] < 0:
588
  if df_combined_t.values[[10],[1]] < 0:
589
- cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
590
- norm = Normalize(vmin=-1.2, vmax=0.8)
591
- colour_df[[10],[1]] = tuple(cmap_flip(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
 
 
 
 
592
  else:
593
  norm = Normalize(vmin=0.8, vmax=1.2)
594
- colour_df[[10],[1]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
595
-
596
-
597
 
598
  ax1 = plt.subplot(1,3,1)
599
  ax2 = plt.subplot(3,3,2)
 
575
 
576
  if df_combined_t.values[[10],[1]] < 0:
577
  if df_combined_t.values[[10],[0]] < 0:
578
+ if df_combined_t.values[[10],[1]] < 0
579
+ cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
580
+ norm = Normalize(vmin=-1.2, vmax=-0.8)
581
+ colour_df[[10],[0]] = tuple(cmap_flip(norm(df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
582
+ else:
583
+ norm = Normalize(vmin=0.8, vmax=1.2)
584
+ colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
585
  else:
586
  norm = Normalize(vmin=0.8, vmax=1.2)
587
  colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
 
590
 
591
  if df_combined_t.values[[10],[2]] < 0:
592
  if df_combined_t.values[[10],[1]] < 0:
593
+ if df_combined_t.values[[10],[1]] < 0
594
+ cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
595
+ norm = Normalize(vmin=-1.2, vmax=-0.8)
596
+ colour_df[[10],[0]] = tuple(cmap_flip(norm(df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
597
+ else:
598
+ norm = Normalize(vmin=0.8, vmax=1.2)
599
+ colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
600
  else:
601
  norm = Normalize(vmin=0.8, vmax=1.2)
602
+ colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
 
 
603
 
604
  ax1 = plt.subplot(1,3,1)
605
  ax2 = plt.subplot(3,3,2)