nesticot commited on
Commit
92c1a9d
·
1 Parent(s): 7b3ba2f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -584,7 +584,7 @@ def server(input, output, session):
584
  colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
585
  else:
586
  norm = Normalize(vmin=0.8, vmax=1.2)
587
- colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
588
 
589
 
590
 
@@ -593,13 +593,13 @@ def server(input, output, session):
593
  if df_combined_t.values[[10],[1]] < 0:
594
  cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
595
  norm = Normalize(vmin=-1.2, vmax=-0.8)
596
- colour_df[[10],[0]] = tuple(cmap_flip(norm(df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
597
  else:
598
  norm = Normalize(vmin=0.8, vmax=1.2)
599
- colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
600
  else:
601
  norm = Normalize(vmin=0.8, vmax=1.2)
602
- colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
603
 
604
  ax1 = plt.subplot(1,3,1)
605
  ax2 = plt.subplot(3,3,2)
 
584
  colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
585
  else:
586
  norm = Normalize(vmin=0.8, vmax=1.2)
587
+ colour_df[[10],[0]] = tuple(colormap(norm(df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
588
 
589
 
590
 
 
593
  if df_combined_t.values[[10],[1]] < 0:
594
  cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
595
  norm = Normalize(vmin=-1.2, vmax=-0.8)
596
+ colour_df[[10],[1]] = tuple(cmap_flip(norm(df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
597
  else:
598
  norm = Normalize(vmin=0.8, vmax=1.2)
599
+ colour_df[[10],[1]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
600
  else:
601
  norm = Normalize(vmin=0.8, vmax=1.2)
602
+ colour_df[[10],[1]] = tuple(colormap(norm(df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
603
 
604
  ax1 = plt.subplot(1,3,1)
605
  ax2 = plt.subplot(3,3,2)