Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ from matplotlib.ticker import MaxNLocator
|
|
16 |
import matplotlib.font_manager as font_manager
|
17 |
import numpy as np
|
18 |
|
|
|
19 |
# team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
|
20 |
# player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
|
21 |
team_abv_nst = pd.read_csv('data/team_abv_nst.csv')
|
@@ -24,6 +25,7 @@ team_abv_nst = pd.read_csv('data/team_abv_nst.csv')
|
|
24 |
#team_games_df = team_games_df.merge(right=team_abv,left_on='team',right_on='team_name',how='left').drop(columns='team_name')
|
25 |
team_abv = pd.read_csv('data/team_abv.csv')
|
26 |
|
|
|
27 |
import pickle
|
28 |
from datetime import timedelta
|
29 |
|
@@ -31,33 +33,42 @@ from datetime import timedelta
|
|
31 |
# r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2022-10-01&endDate=2023-06-01')
|
32 |
# schedule = r.json()
|
33 |
|
34 |
-
schedule = json.loads(urlopen('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-07&endDate=2024-04-19').read())
|
35 |
-
|
36 |
-
def flatten(t):
|
37 |
-
|
38 |
-
|
39 |
-
game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
40 |
-
game_type = flatten([[x['gameType'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
41 |
-
game_date = flatten([[(pd.to_datetime(x['gameDate']) - timedelta(hours=8)) for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
42 |
-
game_final = flatten([[x['status']['detailedState'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
43 |
-
game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
44 |
-
game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
45 |
-
|
46 |
-
schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_type':game_type,'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away,'status' : game_final})
|
47 |
-
schedule_df = schedule_df[schedule_df.game_type == 'R'].reset_index(drop=True)
|
48 |
-
schedule_df = schedule_df[schedule_df.status != 'Postponed']
|
49 |
-
schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
schedule_df_merge = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='left')
|
54 |
schedule_df_merge = schedule_df_merge.merge(right=team_abv,left_on='game_away',right_on='team_name',how='left')
|
55 |
schedule_df_merge = schedule_df_merge.drop(columns={'team_name_x','team_name_y'})
|
56 |
schedule_df_merge = schedule_df_merge.rename(columns={'team_abv_x' : 'team_abv_home','team_abv_y' : 'team_abv_away'})
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
#schedule_df_merge.game_date = pd.to_datetime(schedule_df_merge['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
|
62 |
# schedule_df_merge = schedule_df_merge.set_index(pd.DatetimeIndex(schedule_df_merge.game_date).strftime('%Y-%m-%d'))
|
63 |
schedule_df_merge.index = pd.to_datetime(schedule_df_merge.game_date)
|
@@ -67,16 +78,16 @@ schedule_df_merge.index = schedule_df_merge.index.date
|
|
67 |
schedule_df_merge = schedule_df_merge.sort_index()
|
68 |
schedule_df_merge = schedule_df_merge[schedule_df_merge.index <= date(2024,5,1)]
|
69 |
|
70 |
-
schedule_df_merge_final = schedule_df_merge[schedule_df_merge
|
71 |
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
|
72 |
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
|
73 |
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
|
74 |
-
|
75 |
today = pd.to_datetime(datetime.now(pytz.timezone('US/Pacific')).strftime('%Y-%m-%d'))
|
76 |
team_schdule = schedule_df_merge[(schedule_df_merge['team_abv_home']=='EDM')|(schedule_df_merge['team_abv_away']=='EDM')]
|
77 |
team_schdule_live = team_schdule[team_schdule.index <= today]
|
78 |
team_schdule_live.head()
|
79 |
-
|
80 |
team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
|
81 |
player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
|
82 |
team_abv_df = pd.read_csv('data/team_abv.csv')
|
@@ -86,34 +97,38 @@ team_games_df = team_games_df.merge(right=team_abv_df,left_on='team',right_on='t
|
|
86 |
|
87 |
player_games_df = player_games_df.drop_duplicates(subset=['player_id','date'],keep='last').reset_index(drop=True)
|
88 |
player_games_df.date = pd.to_datetime(player_games_df.date)
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
|
92 |
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
|
93 |
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
|
94 |
team_games_df['team_game'] = team_games_df.groupby('team').cumcount()+1
|
95 |
player_games_df = player_games_df.merge(right=schedule_ccount_df,left_on=['Team','date'],right_on=['team','date'],how='left')
|
96 |
player_games_df['player_game'] = player_games_df.groupby('player_id').cumcount()+1
|
97 |
-
|
98 |
date_range_list = pd.date_range(start=player_games_df.date.min()+timedelta(days=6),end=player_games_df.date.max())
|
99 |
|
100 |
-
|
101 |
team_abv_nst_dict = {'All':''} | team_abv_nst.set_index('team_abv')['team_name'].to_dict()
|
102 |
|
103 |
position_dict = {'All':'','F':'Forwards','D':'Defense'}
|
104 |
-
|
|
|
105 |
player_games_df = player_games_df.rename(columns={'Total Points_pp':'PP Points'})
|
106 |
|
107 |
stat_input_list = ['TOI', 'Goals', 'Total Assists',
|
108 |
'First Assists', 'Total Points', 'PP Points','Shots', 'Hits',
|
109 |
'Shots Blocked']
|
110 |
-
|
111 |
|
112 |
df_cum_stat_total = player_games_df.groupby(['player_id','Player','Position']).agg(
|
113 |
GP = ('GP','count'),
|
114 |
-
|
115 |
).reset_index()
|
116 |
|
|
|
117 |
df_all_sort = df_cum_stat_total.copy()
|
118 |
stat_pick = 'Total_Points'
|
119 |
count=11
|
@@ -169,7 +184,7 @@ import matplotlib.image as mpimg
|
|
169 |
app_ui = ui.page_fluid(
|
170 |
#shinyswatch.theme.cosmo(),
|
171 |
ui.layout_sidebar(
|
172 |
-
|
173 |
# Available themes:
|
174 |
# cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
|
175 |
# materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
|
@@ -204,35 +219,35 @@ app_ui = ui.page_fluid(
|
|
204 |
# ui.input_date("x", "Date input"),),
|
205 |
# ui.column(
|
206 |
# 1,
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
# )
|
237 |
# )
|
238 |
# )
|
@@ -246,29 +261,28 @@ app_ui = ui.page_fluid(
|
|
246 |
|
247 |
|
248 |
|
249 |
-
|
250 |
def server(input, output, session):
|
251 |
|
252 |
|
253 |
@reactive.Effect
|
254 |
def _():
|
255 |
-
|
256 |
|
|
|
257 |
team_select_list = [input.team_select()]
|
258 |
position_select_list = [input.position_select()]
|
259 |
-
|
260 |
if team_select_list[0] == 'All':
|
261 |
team_select_list = team_abv_nst.team_abv.unique()
|
262 |
-
|
263 |
if position_select_list[0] == 'All':
|
264 |
position_select_list = player_games_df.Position.unique()
|
265 |
-
|
266 |
elif position_select_list[0] == 'F':
|
267 |
position_select_list = player_games_df[player_games_df.Position != 'D'].Position.unique()
|
268 |
|
269 |
else:
|
270 |
position_select_list = ['D']
|
271 |
-
|
272 |
print(team_select_list)
|
273 |
|
274 |
|
@@ -289,7 +303,7 @@ def server(input, output, session):
|
|
289 |
GP = ('GP','count'),
|
290 |
Total_Points = (f'{input.stat()}','sum')
|
291 |
).reset_index()
|
292 |
-
|
293 |
df_all_sort = df_cum_stat_total.copy()
|
294 |
stat_pick = 'Total_Points'
|
295 |
count=6
|
@@ -307,195 +321,192 @@ def server(input, output, session):
|
|
307 |
temp_df['temp'] = temp_df[stat_pick+' per game Rank'].rank()#.sort_values(ascending=True)#.reset_index(drop=True)
|
308 |
temp_df = temp_df.sort_values(by='temp',ascending=True)#.reset_index(drop=True)
|
309 |
temp = temp_df[temp_df['temp']<=(count-len(df_all_sort_list))]
|
310 |
-
|
311 |
players_list_new = list(pd.concat([df_all_sort_list,temp]).reset_index(drop=True)['player_id'])
|
312 |
-
|
313 |
-
|
314 |
skater_dict = df_cum_stat_total.sort_values(by=['Total_Points','GP'],ascending=[False,True]).drop_duplicates(subset='player_id').set_index('player_id')#.sort_values(by='Player')
|
315 |
#skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
|
316 |
skater_dict = skater_dict['Player'].to_dict()
|
317 |
# players_list = list(df_all_sort['Player'])
|
318 |
-
|
319 |
ui.update_select(
|
320 |
"id",
|
321 |
label="Select Skater (max. 10 Skaters)",
|
322 |
choices=skater_dict,
|
323 |
selected=list(players_list_new[0:10]))
|
324 |
-
|
325 |
-
|
326 |
-
@output
|
327 |
-
@render.table
|
328 |
-
def result():
|
329 |
-
if input.rookie_switch():
|
330 |
-
|
331 |
-
return player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))&(player_games_df.player_id.isin(rookie_list))].groupby(['player_id','Player','Position']).agg(
|
332 |
-
GP = ('GP','count'),
|
333 |
-
Stat = (f'{input.stat()}','sum')
|
334 |
-
).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
|
335 |
-
|
336 |
-
else:
|
337 |
-
return player_games_df[player_games_df.date <= pd.to_datetime(input.date())].groupby(['player_id','Player','Position']).agg(
|
338 |
-
GP = ('GP','count'),
|
339 |
-
Stat = (f'{input.stat()}','sum')
|
340 |
-
).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
|
341 |
-
|
342 |
-
|
343 |
-
@output
|
344 |
-
@render.plot(alt="A histogram")
|
345 |
-
def plot():
|
346 |
-
|
347 |
-
|
348 |
-
team_select_list = [input.team_select()]
|
349 |
-
position_select_list = [input.position_select()]
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
if team_select_list[0] == 'All':
|
354 |
-
team_select_title = 'NHL '
|
355 |
-
else:
|
356 |
-
team_select_title = f'{team_abv_nst_dict[team_select_list[0]]} '
|
357 |
-
|
358 |
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
361 |
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
-
|
366 |
-
|
|
|
367 |
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
i = 0
|
373 |
-
#rookie = ''
|
374 |
-
current_season = '2023'
|
375 |
-
start_season = '2024'
|
376 |
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
|
|
|
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
|
|
383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
stat = input.stat()
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
team_schedule_url_merge
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
#print('touble',i, player_lookup_list[i],len(player_games_df[(player_games_df.player_id == player_lookup_list[i])]))
|
399 |
-
team_schedule_url_merge[i].index = team_schedule_url_merge[i].team_game
|
400 |
-
team_schedule_url_merge[i] = team_schedule_url_merge[i].reindex(np.arange(team_schedule_url_merge[i].team_game.min(), team_schedule_url_merge[i].team_game.max() + 1)).reset_index(drop=True)
|
401 |
-
#team_schedule_url_merge[0]['team_game'] = team_schedule_url_merge[0]['index']
|
402 |
-
#team_schedule_url_merge[0]['player_game'] =
|
403 |
-
#schedule_ccount_df[schedule_ccount_df['team'].isin(team_schedule_url_merge[0].Team.unique())].merge(right=team_schedule_url_merge[0],left_on=['date','team'],right_on=['date','Team'],how='left')
|
404 |
-
|
405 |
-
team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat].cumsum()
|
406 |
-
|
407 |
-
|
408 |
-
#team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat_pick]
|
409 |
-
team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i]).sort_index()
|
410 |
-
team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i].iloc[0]).sort_index().reset_index(drop=True)
|
411 |
-
|
412 |
-
team_schedule_url_merge[i]['team_game'][0] = 0
|
413 |
-
team_schedule_url_merge[i]['player_game'][0] = 0
|
414 |
-
team_schedule_url_merge[i]['stat'][0] = 0
|
415 |
-
|
416 |
-
for j in range(1,len(team_schedule_url_merge[i]),2):
|
417 |
-
team_schedule_url_merge[i]['player_game'][j] = team_schedule_url_merge[i]['player_game'][j]-1
|
418 |
-
team_schedule_url_merge[i]['team_game'][j] = team_schedule_url_merge[i]['team_game'][j]-1
|
419 |
-
team_schedule_url_merge[i]['stat'][j] = team_schedule_url_merge[i]['stat'][j] - team_schedule_url_merge[i][stat][j]
|
420 |
-
|
421 |
-
if len(team_schedule_url_merge[i]) >3:
|
422 |
-
if pd.isna(team_schedule_url_merge[i].iloc[3]['player_game']) and pd.isna(team_schedule_url_merge[i].iloc[1]['player_game']) == True:
|
423 |
-
team_schedule_url_merge[i]['player_game'][2] = np.nan
|
424 |
-
team_schedule_url_merge[i]['stat'][2] = np.nan
|
425 |
-
|
426 |
-
if len(team_schedule_url_merge[i]) >3:
|
427 |
-
if pd.isna(team_schedule_url_merge[i].iloc[len(team_schedule_url_merge[i])-1]['player_game']) == True:
|
428 |
-
team_schedule_url_merge[i]['stat'][len(team_schedule_url_merge[i])-1] = np.nanmax(team_schedule_url_merge[i]['stat'])
|
429 |
-
|
430 |
-
if not (team_schedule_url_merge[i]['team_game'].values[1] == team_schedule_url_merge[i]['player_game'].values[0]):
|
431 |
-
team_schedule_url_merge[i].loc[0,'team_game'] = np.nan
|
432 |
-
|
433 |
-
|
434 |
-
max_games_player.append(np.around(np.nanmax(team_schedule_url_merge[i]['player_game'])))
|
435 |
-
max_games_team.append(np.around(np.nanmax(team_schedule_url_merge[i]['team_game'])))
|
436 |
-
max_stat.append((np.around(np.nanmax(team_schedule_url_merge[i]['stat']))))
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
fig, ax = plt.subplots(figsize=(15,15))
|
444 |
-
cgfont = {'fontname':'Century Gothic'}
|
445 |
-
font = font_manager.FontProperties(family='Century Gothic',
|
446 |
-
style='normal', size=18)
|
447 |
-
|
448 |
-
|
449 |
-
ax.axhline(0,color='black',linestyle ="--",linewidth=2,alpha=1.0,label='Missed Games')
|
450 |
-
ax.axhline(0,color='black',linestyle ="-",linewidth=2,alpha=1.0)
|
451 |
-
|
452 |
-
|
453 |
-
if 'Total' in stat:
|
454 |
-
stat = stat.replace('Total ',"")
|
455 |
-
|
456 |
-
|
457 |
-
colour_scheme = ['#648FFF','#785EF0','#DC267F','#FE6100','#FFB000','#FAEF3B','#861318','#2ED3BC','#341BBF','#B37E2C']
|
458 |
-
|
459 |
-
for i in range(len(team_schedule_url_merge)):
|
460 |
-
sns.lineplot(team_schedule_url_merge[i].reset_index()['team_game'],team_schedule_url_merge[i].reset_index()['stat'],linewidth=3-i*.2,color=colour_scheme[i])
|
461 |
-
plt.plot(team_schedule_url_merge[i]['team_game'],team_schedule_url_merge[i]['stat'],color=ax.lines[i*2+2].get_color(),label=str(i+1)+'. '+team_schedule_url_merge[i]['Player'][0]+', '+str(int(max_stat[i]))+' '+stat+' in '+str(int(max(team_schedule_url_merge[i]['player_game'])))+' Games',linewidth=6)
|
462 |
-
ax.lines[i*2+2].set_linestyle("--")
|
463 |
-
|
464 |
|
|
|
|
|
465 |
|
466 |
-
|
467 |
-
ax.set(xlim=(0,max([team_schedule_url_merge[x].team_game.max() for x in range(len(team_schedule_url_merge))])))
|
468 |
-
ax.set(ylim=(0,max([team_schedule_url_merge[x].stat.max() for x in range(len(team_schedule_url_merge))])))
|
469 |
|
470 |
-
|
|
|
|
|
|
|
471 |
|
|
|
|
|
|
|
472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
# ax.set_ylabel(stat+"/GP",fontsize=20,color='black',**cgfont)
|
480 |
|
|
|
|
|
481 |
|
|
|
|
|
482 |
|
483 |
-
ax.set_title(str(current_season)[0:4]+'-'+str(start_season)[-4:]+' Season',y=1.01,fontsize=18,color='black',**cgfont,x=0,ha='left')
|
484 |
-
ax.set_xlabel('Team Game',fontsize=20,color='black',**cgfont)
|
485 |
-
ax.tick_params(axis="x", labelsize=24,colors='black')
|
486 |
-
ax.set_facecolor('#ffffff')
|
487 |
-
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
488 |
-
ax.tick_params(axis="y", labelsize=24,colors='black')
|
489 |
-
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
490 |
|
491 |
-
|
492 |
-
fig.text(x=0.975,y=0.01,s="Data: Natural Stat Trick",color='black', fontsize=20, horizontalalignment='right',**cgfont)
|
493 |
-
fig.text(x=.975,y=0.92,s='Date: '+input.date().strftime('%B %d, %Y'),color='black', fontsize=18, horizontalalignment='right',**cgfont)
|
494 |
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
|
501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
import matplotlib.font_manager as font_manager
|
17 |
import numpy as np
|
18 |
|
19 |
+
|
20 |
# team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
|
21 |
# player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
|
22 |
team_abv_nst = pd.read_csv('data/team_abv_nst.csv')
|
|
|
25 |
#team_games_df = team_games_df.merge(right=team_abv,left_on='team',right_on='team_name',how='left').drop(columns='team_name')
|
26 |
team_abv = pd.read_csv('data/team_abv.csv')
|
27 |
|
28 |
+
|
29 |
import pickle
|
30 |
from datetime import timedelta
|
31 |
|
|
|
33 |
# r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2022-10-01&endDate=2023-06-01')
|
34 |
# schedule = r.json()
|
35 |
|
36 |
+
# schedule = json.loads(urlopen('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-07&endDate=2024-04-19').read())
|
37 |
+
|
38 |
+
# def flatten(t):
|
39 |
+
# return [item for sublist in t for item in sublist]
|
40 |
+
|
41 |
+
# game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
42 |
+
# game_type = flatten([[x['gameType'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
43 |
+
# game_date = flatten([[(pd.to_datetime(x['gameDate']) - timedelta(hours=8)) for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
44 |
+
# game_final = flatten([[x['status']['detailedState'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
45 |
+
# game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
46 |
+
# game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
47 |
+
|
48 |
+
# schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_type':game_type,'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away,'status' : game_final})
|
49 |
+
# schedule_df = schedule_df[schedule_df.game_type == 'R'].reset_index(drop=True)
|
50 |
+
# schedule_df = schedule_df[schedule_df.status != 'Postponed']
|
51 |
+
# schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
|
52 |
+
schedule = pd.read_csv('2024_schedule_href.csv')
|
53 |
+
#schedule = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2024_games.html')[0]
|
54 |
+
#schedule.to_csv('schedule/schedule_'+str(date.today())+'.csv')
|
55 |
+
#schedule = pd.read_csv('schedule/schedule_'+str(date.today())+'.csv')
|
56 |
+
schedule = schedule.replace('St Louis Blues','St. Louis Blues')
|
57 |
+
|
58 |
+
|
59 |
+
schedule_df = schedule.merge(right=team_abv,left_on='Visitor',right_on='team_name',how='inner',suffixes=['','_away'])
|
60 |
+
schedule_df = schedule_df.merge(right=team_abv,left_on='Home',right_on='team_name',how='inner',suffixes=['','_home'])
|
61 |
+
|
62 |
+
schedule_df = schedule_df.rename(columns={'Visitor':'game_away','Home':'game_home','Date':'game_date'})
|
63 |
+
|
64 |
+
|
65 |
schedule_df_merge = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='left')
|
66 |
schedule_df_merge = schedule_df_merge.merge(right=team_abv,left_on='game_away',right_on='team_name',how='left')
|
67 |
schedule_df_merge = schedule_df_merge.drop(columns={'team_name_x','team_name_y'})
|
68 |
schedule_df_merge = schedule_df_merge.rename(columns={'team_abv_x' : 'team_abv_home','team_abv_y' : 'team_abv_away'})
|
69 |
|
70 |
+
|
71 |
+
schedule_df_merge = schedule_df_merge.loc[:,~schedule_df_merge.columns.duplicated()].copy()
|
|
|
72 |
#schedule_df_merge.game_date = pd.to_datetime(schedule_df_merge['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
|
73 |
# schedule_df_merge = schedule_df_merge.set_index(pd.DatetimeIndex(schedule_df_merge.game_date).strftime('%Y-%m-%d'))
|
74 |
schedule_df_merge.index = pd.to_datetime(schedule_df_merge.game_date)
|
|
|
78 |
schedule_df_merge = schedule_df_merge.sort_index()
|
79 |
schedule_df_merge = schedule_df_merge[schedule_df_merge.index <= date(2024,5,1)]
|
80 |
|
81 |
+
schedule_df_merge_final = schedule_df_merge[schedule_df_merge.index<date.today()]
|
82 |
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
|
83 |
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
|
84 |
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
|
85 |
+
|
86 |
today = pd.to_datetime(datetime.now(pytz.timezone('US/Pacific')).strftime('%Y-%m-%d'))
|
87 |
team_schdule = schedule_df_merge[(schedule_df_merge['team_abv_home']=='EDM')|(schedule_df_merge['team_abv_away']=='EDM')]
|
88 |
team_schdule_live = team_schdule[team_schdule.index <= today]
|
89 |
team_schdule_live.head()
|
90 |
+
|
91 |
team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
|
92 |
player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
|
93 |
team_abv_df = pd.read_csv('data/team_abv.csv')
|
|
|
97 |
|
98 |
player_games_df = player_games_df.drop_duplicates(subset=['player_id','date'],keep='last').reset_index(drop=True)
|
99 |
player_games_df.date = pd.to_datetime(player_games_df.date)
|
100 |
+
|
101 |
+
team_games_df['date'] = pd.to_datetime(team_games_df['date']).dt.date
|
102 |
+
team_games_df = team_games_df[team_games_df['date']<date.today()]
|
103 |
+
|
104 |
+
#schedule_df_merge_final = schedule_df_merge[schedule_df_merge['status']=='Final']
|
105 |
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
|
106 |
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
|
107 |
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
|
108 |
team_games_df['team_game'] = team_games_df.groupby('team').cumcount()+1
|
109 |
player_games_df = player_games_df.merge(right=schedule_ccount_df,left_on=['Team','date'],right_on=['team','date'],how='left')
|
110 |
player_games_df['player_game'] = player_games_df.groupby('player_id').cumcount()+1
|
111 |
+
|
112 |
date_range_list = pd.date_range(start=player_games_df.date.min()+timedelta(days=6),end=player_games_df.date.max())
|
113 |
|
|
|
114 |
team_abv_nst_dict = {'All':''} | team_abv_nst.set_index('team_abv')['team_name'].to_dict()
|
115 |
|
116 |
position_dict = {'All':'','F':'Forwards','D':'Defense'}
|
117 |
+
|
118 |
+
player_games_df.player_id = player_games_df.player_id.astype(int)
|
119 |
player_games_df = player_games_df.rename(columns={'Total Points_pp':'PP Points'})
|
120 |
|
121 |
stat_input_list = ['TOI', 'Goals', 'Total Assists',
|
122 |
'First Assists', 'Total Points', 'PP Points','Shots', 'Hits',
|
123 |
'Shots Blocked']
|
124 |
+
|
125 |
|
126 |
df_cum_stat_total = player_games_df.groupby(['player_id','Player','Position']).agg(
|
127 |
GP = ('GP','count'),
|
128 |
+
Total_Points = ('Total Points','sum')
|
129 |
).reset_index()
|
130 |
|
131 |
+
|
132 |
df_all_sort = df_cum_stat_total.copy()
|
133 |
stat_pick = 'Total_Points'
|
134 |
count=11
|
|
|
184 |
app_ui = ui.page_fluid(
|
185 |
#shinyswatch.theme.cosmo(),
|
186 |
ui.layout_sidebar(
|
187 |
+
|
188 |
# Available themes:
|
189 |
# cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
|
190 |
# materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
|
|
|
219 |
# ui.input_date("x", "Date input"),),
|
220 |
# ui.column(
|
221 |
# 1,
|
222 |
+
# ui.input_select("level_id", "Select Level",level_dict,width=1)),
|
223 |
+
# ui.column(
|
224 |
+
# 3,
|
225 |
+
# ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
|
226 |
+
# ui.column(
|
227 |
+
# 2,
|
228 |
+
# ui.input_numeric("n", "Rolling Window Size", value=50)),
|
229 |
+
# ),
|
230 |
+
# ui.output_table("result_batters")),
|
231 |
+
|
232 |
+
# ui.nav(
|
233 |
+
# "Pitchers",
|
234 |
+
|
235 |
+
# ui.row(
|
236 |
+
# ui.column(
|
237 |
+
# 3,
|
238 |
+
# ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
|
239 |
+
# ),
|
240 |
+
# ui.column(
|
241 |
+
# 1,
|
242 |
+
# ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
|
243 |
+
# ui.column(
|
244 |
+
# 3,
|
245 |
+
# ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
|
246 |
+
# ui.column(
|
247 |
+
# 2,
|
248 |
+
# ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
|
249 |
+
# ),
|
250 |
+
# ui.output_table("result_pitchers")),
|
251 |
# )
|
252 |
# )
|
253 |
# )
|
|
|
261 |
|
262 |
|
263 |
|
|
|
264 |
def server(input, output, session):
|
265 |
|
266 |
|
267 |
@reactive.Effect
|
268 |
def _():
|
|
|
269 |
|
270 |
+
|
271 |
team_select_list = [input.team_select()]
|
272 |
position_select_list = [input.position_select()]
|
273 |
+
|
274 |
if team_select_list[0] == 'All':
|
275 |
team_select_list = team_abv_nst.team_abv.unique()
|
276 |
+
|
277 |
if position_select_list[0] == 'All':
|
278 |
position_select_list = player_games_df.Position.unique()
|
279 |
+
|
280 |
elif position_select_list[0] == 'F':
|
281 |
position_select_list = player_games_df[player_games_df.Position != 'D'].Position.unique()
|
282 |
|
283 |
else:
|
284 |
position_select_list = ['D']
|
285 |
+
|
286 |
print(team_select_list)
|
287 |
|
288 |
|
|
|
303 |
GP = ('GP','count'),
|
304 |
Total_Points = (f'{input.stat()}','sum')
|
305 |
).reset_index()
|
306 |
+
|
307 |
df_all_sort = df_cum_stat_total.copy()
|
308 |
stat_pick = 'Total_Points'
|
309 |
count=6
|
|
|
321 |
temp_df['temp'] = temp_df[stat_pick+' per game Rank'].rank()#.sort_values(ascending=True)#.reset_index(drop=True)
|
322 |
temp_df = temp_df.sort_values(by='temp',ascending=True)#.reset_index(drop=True)
|
323 |
temp = temp_df[temp_df['temp']<=(count-len(df_all_sort_list))]
|
324 |
+
|
325 |
players_list_new = list(pd.concat([df_all_sort_list,temp]).reset_index(drop=True)['player_id'])
|
326 |
+
|
327 |
+
|
328 |
skater_dict = df_cum_stat_total.sort_values(by=['Total_Points','GP'],ascending=[False,True]).drop_duplicates(subset='player_id').set_index('player_id')#.sort_values(by='Player')
|
329 |
#skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
|
330 |
skater_dict = skater_dict['Player'].to_dict()
|
331 |
# players_list = list(df_all_sort['Player'])
|
332 |
+
|
333 |
ui.update_select(
|
334 |
"id",
|
335 |
label="Select Skater (max. 10 Skaters)",
|
336 |
choices=skater_dict,
|
337 |
selected=list(players_list_new[0:10]))
|
338 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
+
|
341 |
+
@output
|
342 |
+
@render.table
|
343 |
+
def result():
|
344 |
+
if input.rookie_switch():
|
345 |
|
346 |
+
return player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))&(player_games_df.player_id.isin(rookie_list))].groupby(['player_id','Player','Position']).agg(
|
347 |
+
GP = ('GP','count'),
|
348 |
+
Stat = (f'{input.stat()}','sum')
|
349 |
+
).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
|
350 |
+
|
351 |
+
else:
|
352 |
+
return player_games_df[player_games_df.date <= pd.to_datetime(input.date())].groupby(['player_id','Player','Position']).agg(
|
353 |
+
GP = ('GP','count'),
|
354 |
+
Stat = (f'{input.stat()}','sum')
|
355 |
+
).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
|
356 |
+
|
357 |
+
|
358 |
+
@output
|
359 |
+
@render.plot(alt="A histogram")
|
360 |
+
def plot():
|
361 |
+
|
362 |
+
team_select_list = [input.team_select()]
|
363 |
+
position_select_list = [input.position_select()]
|
364 |
+
|
365 |
+
if team_select_list[0] == 'All':
|
366 |
+
team_select_title = 'NHL '
|
367 |
+
else:
|
368 |
+
team_select_title = f'{team_abv_nst_dict[team_select_list[0]]} '
|
369 |
+
|
370 |
+
|
371 |
+
if position_select_list[0] == 'All':
|
372 |
+
position_select_title = ''
|
373 |
|
374 |
+
|
375 |
+
elif position_select_list[0] == 'F':
|
376 |
+
position_select_title = 'Forwards '
|
377 |
|
378 |
+
|
379 |
+
else:
|
380 |
+
position_select_title = 'Defense '
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
+
|
383 |
+
rookie = ''
|
384 |
+
if input.rookie_switch():
|
385 |
+
rookie = 'Rookie '
|
386 |
+
|
387 |
+
i = 0
|
388 |
+
#rookie = ''
|
389 |
+
current_season = '2023'
|
390 |
+
start_season = '2024'
|
391 |
|
392 |
+
|
393 |
+
# player_lookup_list = ['Connor McDavid','David Pastrnak','Nathan MacKinnon']
|
394 |
|
395 |
+
|
396 |
+
type(input.id())
|
397 |
+
print(input.id())
|
398 |
+
player_lookup_list = list(input.id())[0:10]
|
399 |
|
400 |
+
|
401 |
+
stat = input.stat()
|
402 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
403 |
+
#print(type([input.date()))
|
404 |
+
date_range_list = [pd.to_datetime(input.date())]
|
405 |
+
for k in range(len(date_range_list)):
|
406 |
+
print(date_range_list[k])
|
407 |
stat = input.stat()
|
408 |
+
team_schedule_url_merge = []
|
409 |
+
max_games_player = []
|
410 |
+
max_games_team = []
|
411 |
+
max_stat = []
|
412 |
+
per_game = False
|
413 |
+
for i in range(0,len(player_lookup_list)):
|
414 |
+
team_schedule_url_merge.append(player_games_df[(player_games_df.player_id == int(player_lookup_list[i]))&(date_range_list[k] >= player_games_df.date)].reset_index(drop=True))
|
415 |
+
#print('touble',i, player_lookup_list[i],len(player_games_df[(player_games_df.player_id == player_lookup_list[i])]))
|
416 |
+
team_schedule_url_merge[i].index = team_schedule_url_merge[i].team_game
|
417 |
+
team_schedule_url_merge[i] = team_schedule_url_merge[i].reindex(np.arange(team_schedule_url_merge[i].team_game.min(), team_schedule_url_merge[i].team_game.max() + 1)).reset_index(drop=True)
|
418 |
+
#team_schedule_url_merge[0]['team_game'] = team_schedule_url_merge[0]['index']
|
419 |
+
#team_schedule_url_merge[0]['player_game'] =
|
420 |
+
#schedule_ccount_df[schedule_ccount_df['team'].isin(team_schedule_url_merge[0].Team.unique())].merge(right=team_schedule_url_merge[0],left_on=['date','team'],right_on=['date','Team'],how='left')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
+
|
423 |
+
team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat].cumsum()
|
424 |
|
425 |
+
|
|
|
|
|
426 |
|
427 |
+
|
428 |
+
#team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat_pick]
|
429 |
+
team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i]).sort_index()
|
430 |
+
team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i].iloc[0]).sort_index().reset_index(drop=True)
|
431 |
|
432 |
+
team_schedule_url_merge[i]['team_game'][0] = 0
|
433 |
+
team_schedule_url_merge[i]['player_game'][0] = 0
|
434 |
+
team_schedule_url_merge[i]['stat'][0] = 0
|
435 |
|
436 |
+
|
437 |
+
for j in range(1,len(team_schedule_url_merge[i]),2):
|
438 |
+
team_schedule_url_merge[i]['player_game'][j] = team_schedule_url_merge[i]['player_game'][j]-1
|
439 |
+
team_schedule_url_merge[i]['team_game'][j] = team_schedule_url_merge[i]['team_game'][j]-1
|
440 |
+
team_schedule_url_merge[i]['stat'][j] = team_schedule_url_merge[i]['stat'][j] - team_schedule_url_merge[i][stat][j]
|
441 |
+
|
442 |
+
if len(team_schedule_url_merge[i]) >3:
|
443 |
+
if pd.isna(team_schedule_url_merge[i].iloc[3]['player_game']) and pd.isna(team_schedule_url_merge[i].iloc[1]['player_game']) == True:
|
444 |
+
team_schedule_url_merge[i]['player_game'][2] = np.nan
|
445 |
+
team_schedule_url_merge[i]['stat'][2] = np.nan
|
446 |
+
|
447 |
+
if len(team_schedule_url_merge[i]) >3:
|
448 |
+
if pd.isna(team_schedule_url_merge[i].iloc[len(team_schedule_url_merge[i])-1]['player_game']) == True:
|
449 |
+
team_schedule_url_merge[i]['stat'][len(team_schedule_url_merge[i])-1] = np.nanmax(team_schedule_url_merge[i]['stat'])
|
450 |
+
|
451 |
+
if not (team_schedule_url_merge[i]['team_game'].values[1] == team_schedule_url_merge[i]['player_game'].values[0]):
|
452 |
+
team_schedule_url_merge[i].loc[0,'team_game'] = np.nan
|
453 |
+
|
454 |
+
|
455 |
+
max_games_player.append(np.around(np.nanmax(team_schedule_url_merge[i]['player_game'])))
|
456 |
+
max_games_team.append(np.around(np.nanmax(team_schedule_url_merge[i]['team_game'])))
|
457 |
+
max_stat.append((np.around(np.nanmax(team_schedule_url_merge[i]['stat']))))
|
458 |
|
459 |
+
|
460 |
+
fig, ax = plt.subplots(figsize=(15,15))
|
461 |
+
cgfont = {'fontname':'Century Gothic'}
|
462 |
+
font = font_manager.FontProperties(family='Century Gothic',
|
463 |
+
style='normal', size=14)
|
|
|
464 |
|
465 |
+
ax.axhline(0,color='black',linestyle ="--",linewidth=2,alpha=1.0,label='Missed Games')
|
466 |
+
ax.axhline(0,color='black',linestyle ="-",linewidth=2,alpha=1.0)
|
467 |
|
468 |
+
if 'Total' in stat:
|
469 |
+
stat = stat.replace('Total ',"")
|
470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
|
472 |
+
colour_scheme = ['#648FFF','#785EF0','#DC267F','#FE6100','#FFB000','#FAEF3B','#861318','#2ED3BC','#341BBF','#B37E2C']
|
|
|
|
|
473 |
|
474 |
+
|
475 |
+
for i in range(len(team_schedule_url_merge)):
|
476 |
+
sns.lineplot(team_schedule_url_merge[i].reset_index()['team_game'],team_schedule_url_merge[i].reset_index()['stat'],linewidth=3-i*.2,color=colour_scheme[i])
|
477 |
+
plt.plot(team_schedule_url_merge[i]['team_game'],team_schedule_url_merge[i]['stat'],color=ax.lines[i*2+2].get_color(),label=str(i+1)+'. '+team_schedule_url_merge[i]['Player'][0]+', '+str(int(max_stat[i]))+' '+stat+' in '+str(int(max(team_schedule_url_merge[i]['player_game'])))+' Games',linewidth=6)
|
478 |
+
ax.lines[i*2+2].set_linestyle("--")
|
479 |
|
480 |
+
|
481 |
+
fig.set_facecolor('#ffffff')
|
482 |
+
ax.set(xlim=(0,max([team_schedule_url_merge[x].team_game.max() for x in range(len(team_schedule_url_merge))])))
|
483 |
+
ax.set(ylim=(0,max([team_schedule_url_merge[x].stat.max() for x in range(len(team_schedule_url_merge))])))
|
484 |
+
|
485 |
+
ax.legend_.remove()
|
486 |
+
|
487 |
+
if per_game == False:
|
488 |
+
fig.suptitle(f'{rookie}{team_select_title}{position_select_title}{stat} Race',y=.98,fontsize=32,color='black',**cgfont)
|
489 |
+
ax.set_ylabel(stat,fontsize=20,color='black',**cgfont)
|
490 |
+
# else:
|
491 |
+
# fig.suptitle(stat+' Per Game, All Situations',y=.99,fontsize=48,color='black',**cgfont)
|
492 |
+
# ax.set_ylabel(stat+"/GP",fontsize=20,color='black',**cgfont)
|
493 |
+
ax.set_title(str(current_season)[0:4]+'-'+str(start_season)[-4:]+' Season',y=1.01,fontsize=18,color='black',**cgfont,x=0,ha='left')
|
494 |
+
ax.set_xlabel('Team Game',fontsize=20,color='black',**cgfont)
|
495 |
+
ax.tick_params(axis="x", labelsize=24,colors='black')
|
496 |
+
ax.set_facecolor('#ffffff')
|
497 |
+
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
498 |
+
ax.tick_params(axis="y", labelsize=24,colors='black')
|
499 |
+
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
500 |
+
|
501 |
+
fig.text(x=0.025,y=0.01,s="Created By: @TJStats",color='black', fontsize=20, horizontalalignment='left',**cgfont)
|
502 |
+
fig.text(x=0.975,y=0.01,s="Data: Natural Stat Trick",color='black', fontsize=20, horizontalalignment='right',**cgfont)
|
503 |
+
fig.text(x=.975,y=0.92,s='Date: '+input.date().strftime('%B %d, %Y'),color='black', fontsize=18, horizontalalignment='right',**cgfont)
|
504 |
+
|
505 |
+
ax.legend(prop=font,bbox_to_anchor=(0.01, 0.99),loc='upper left',framealpha=1,frameon=True)
|
506 |
+
plt.tight_layout()
|
507 |
+
#fig.savefig('gif_race/'+stat+rookie+str(date_range_list[k].date())+'.png', facecolor=fig.get_facecolor(), edgecolor='none',bbox_inches='tight',dpi=100)
|
508 |
+
#plt.close()
|
509 |
+
#fig.legend(prop=font,loc='best',framealpha=1,frameon=True)
|
510 |
+
|
511 |
+
|
512 |
+
app = App(app_ui, server)
|