Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,708 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import requests
|
4 |
-
import math
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import seaborn as sns
|
7 |
-
import matplotlib.patches as patches
|
8 |
-
import matplotlib.colors as mcolors
|
9 |
-
import matplotlib
|
10 |
-
import inflect
|
11 |
-
infl = inflect.engine()
|
12 |
-
from matplotlib.offsetbox import (OffsetImage, AnnotationBbox)
|
13 |
-
from matplotlib.colors import Normalize
|
14 |
-
from matplotlib.ticker import FuncFormatter
|
15 |
-
import matplotlib.ticker as mtick
|
16 |
-
from matplotlib.colors import Normalize
|
17 |
-
import urllib
|
18 |
-
import urllib.request
|
19 |
-
import urllib.error
|
20 |
-
from urllib.error import HTTPError
|
21 |
-
import time
|
22 |
-
from shinywidgets import output_widget, render_widget
|
23 |
-
import shinyswatch
|
24 |
-
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
25 |
-
|
26 |
-
column_list = ['woba_percent',
|
27 |
-
'xwoba_percent',
|
28 |
-
'barrel_percent',
|
29 |
-
'sweet_spot_percent',
|
30 |
-
'hard_hit_percent',
|
31 |
-
'launch_speed',
|
32 |
-
'launch_speed_90',
|
33 |
-
'max_launch_speed',
|
34 |
-
'k_percent',
|
35 |
-
'bb_percent',
|
36 |
-
'swing_percent',
|
37 |
-
'whiff_rate',
|
38 |
-
'zone_swing_percent',
|
39 |
-
'zone_contact_percent',
|
40 |
-
'chase_percent',
|
41 |
-
'chase_contact']
|
42 |
-
column_list_pitch = ['pitches','bip','xwoba_percent','whiff_rate','chase_percent']
|
43 |
-
|
44 |
-
import joblib
|
45 |
-
|
46 |
-
|
47 |
-
loaded_model = joblib.load('joblib_model/barrel_model.joblib')
|
48 |
-
in_zone_model = joblib.load('joblib_model/in_zone_model_knn_20240410.joblib')
|
49 |
-
|
50 |
-
stat_plot_dict = {'woba_percent':{'name':'wOBA','format':'.3f','flip':False},
|
51 |
-
'xwoba_percent':{'name':'xwOBA','format':'.3f','flip':False},
|
52 |
-
'woba_percent_contact':{'name':'wOBACON','format':'.3f','flip':False},
|
53 |
-
'barrel_percent':{'name':'Barrel%','format':'.1%','flip':False},
|
54 |
-
'max_launch_speed':{'name':'Max EV','format':'.1f','flip':False},
|
55 |
-
'launch_speed_90':{'name':'90th% EV','format':'.1f','flip':False},
|
56 |
-
'launch_speed':{'name':'Avg EV','format':'.1f','flip':False},
|
57 |
-
'sweet_spot_percent':{'name':'SwSpot%','format':'.1%','flip':False},
|
58 |
-
'hard_hit_percent':{'name':'HardHit%','format':'.1%','flip':False},
|
59 |
-
'k_percent':{'name':'K%','format':'.1%','flip':True},
|
60 |
-
'bb_percent':{'name':'BB%','format':'.1%','flip':False},
|
61 |
-
'zone_contact_percent':{'name':'Z-Contact%','format':'.1%','flip':False},
|
62 |
-
'zone_swing_percent':{'name':'Z-Swing%','format':'.1%','flip':False},
|
63 |
-
'zone_percent':{'name':'Zone%','format':'.1%','flip':False},
|
64 |
-
'chase_percent':{'name':'O-Swing%','format':'.1%','flip':True},
|
65 |
-
'chase_contact':{'name':'O-Contact%','format':'.1%','flip':False},
|
66 |
-
'swing_percent':{'name':'Swing%','format':'.1%','flip':False},
|
67 |
-
'whiff_rate':{'name':'Whiff%','format':'.1%','flip':True},
|
68 |
-
'bip':{'name':'Balls in Play','format':'.0f','flip':False},
|
69 |
-
'pitches':{'name':'Pitches','format':'.0f','flip':False},}
|
70 |
-
|
71 |
-
stat_plot_dict_rolling = {'woba_percent':{'name':'wOBA','format':'.3f','flip':False,'y':'woba','div':'woba_codes','y_min':0.2,'y_max':0.6,'x_label':'wOBA PA','form':'3f'},
|
72 |
-
'xwoba_percent':{'name':'xwOBA','format':'.3f','flip':False,'y':'xwoba','div':'woba_codes','y_min':0.2,'y_max':0.6,'x_label':'xwOBA PA','form':'3f'},
|
73 |
-
'k_percent':{'name':'K%','format':'.1%','flip':True,'y':'k','div':'pa','y_min':0.0,'y_max':0.4,'x_label':'PA','form':'1%'},
|
74 |
-
'bb_percent':{'name':'BB%','format':'.1%','flip':False,'y':'bb','div':'pa','y_min':0.0,'y_max':0.3,'x_label':'PA','form':'1%'},
|
75 |
-
'zone_contact_percent':{'name':'Z-Contact%','format':'.1%','flip':False,'y':'zone_contact','div':'zone_swing','y_min':0.6,'y_max':1.0,'x_label':'In-Zone Swings','form':'1%'},
|
76 |
-
'zone_swing_percent':{'name':'Z-Swing%','format':'.1%','flip':False,'y':'zone_swing','div':'in_zone','y_min':0.5,'y_max':1.0,'x_label':'In-Zone Pitches','form':'1%'},
|
77 |
-
'zone_percent':{'name':'Zone%','format':'.1%','flip':False,'y':'in_zone','div':'pitches','y_min':0.3,'y_max':0.7,'x_label':'Pitches','form':'1%'},
|
78 |
-
'chase_percent':{'name':'O-Swing%','format':'.1%','flip':True,'y':'ozone_swing','div':'out_zone','y_min':0.1,'y_max':0.4,'x_label':'Out-of-Zone Pitches','form':'1%'},
|
79 |
-
'chase_contact':{'name':'O-Contact%','format':'.1%','flip':False,'y':'ozone_contact','div':'ozone_swing','y_min':0.4,'y_max':0.8,'x_label':'Out-of-Zone Swings','form':'1%'},
|
80 |
-
'swing_percent':{'name':'Swing%','format':'.1%','flip':False,'y':'swings','div':'pitches','y_min':0.3,'y_max':0.7,'x_label':'Pitches','form':'1%'},
|
81 |
-
'whiff_rate':{'name':'Whiff%','format':'.1%','flip':True,'y':'whiffs','div':'swings','y_min':0.0,'y_max':0.5,'x_label':'Swings','form':'1%'},}
|
82 |
-
|
83 |
-
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#0C7BDC","#FFFFFF","#FFB000"])
|
84 |
-
cmap_sum_r = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFB000","#FFFFFF","#0C7BDC",])
|
85 |
-
cmap_sum.set_bad(color='#C7C7C7', alpha=1.0)
|
86 |
-
cmap_sum_r.set_bad(color='#C7C7C7', alpha=1.0)
|
87 |
-
|
88 |
-
from batting_update import df_update,df_update_summ_avg,df_update_summ,df_summ_batter_pitch_up,df_summ_changes,df_summ_filter_out
|
89 |
-
|
90 |
-
def percentile(n):
|
91 |
-
def percentile_(x):
|
92 |
-
return np.nanpercentile(x, n)
|
93 |
-
percentile_.__name__ = 'percentile_%s' % n
|
94 |
-
return percentile_
|
95 |
-
|
96 |
-
print('Reading A')
|
97 |
-
### Import Datasets
|
98 |
-
from datasets import load_dataset
|
99 |
-
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2024.csv' ])
|
100 |
-
dataset_train = dataset['train']
|
101 |
-
df_a = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
102 |
-
|
103 |
-
|
104 |
-
sport_id_input = 1
|
105 |
-
|
106 |
-
|
107 |
-
print('Reading A')
|
108 |
-
df_a_update = df_update(df_a)
|
109 |
-
|
110 |
-
|
111 |
-
#df_a_update['batter_id'] = df_a_update['batter_id'].astype(int)
|
112 |
-
df_a_update['batter_name'] = df_a_update['batter_name'].str.strip(' ')
|
113 |
-
|
114 |
-
df_a_update['bip'] = df_a_update['bip'].replace({'0':False,'False':False,'True':True})
|
115 |
-
|
116 |
-
|
117 |
-
choices_woba = [0.696,
|
118 |
-
0.726,
|
119 |
-
0.883,
|
120 |
-
1.244,
|
121 |
-
1.569,
|
122 |
-
2.004]
|
123 |
-
|
124 |
-
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch',
|
125 |
-
'double', 'sac_fly', 'force_out', 'home_run',
|
126 |
-
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
127 |
-
'triple', 'sac_bunt', 'double_play',
|
128 |
-
'fielders_choice_out', 'strikeout_double_play',
|
129 |
-
'sac_fly_double_play', 'other_out']
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
df_a_update['bip_div'] = ~df_a_update.launch_speed.isna()
|
134 |
-
|
135 |
-
# df_dom_update['bip_div'] = ~df_dom_update.launch_speed.isna()
|
136 |
-
df_a_update['average'] = 'average'
|
137 |
-
#df_dom_update['average'] = 'average'
|
138 |
-
|
139 |
-
#df_u['is_pitch']
|
140 |
-
|
141 |
-
df_summ_a_update = df_summ_changes(df_update_summ(df_a_update)).set_index(['batter_id','batter_name'])
|
142 |
-
# df_summ_dom_update = df_summ_changes(df_update_summ(df_dom_update)).set_index(['batter_id','batter_name'])
|
143 |
-
|
144 |
-
df_summ_avg_a_update = df_summ_changes(df_update_summ_avg(df_a_update)).set_index(['average'])
|
145 |
-
# df_summ_avg_dom_update = df_summ_changes(df_update_summ_avg(df_dom_update)).set_index(['average'])
|
146 |
-
|
147 |
-
stat_roll_dict = dict(zip(stat_plot_dict_rolling.keys(),
|
148 |
-
[stat_plot_dict_rolling[x]['name'] for x in stat_plot_dict_rolling]))
|
149 |
-
|
150 |
-
df_a_update['batter_id'] = df_a_update['batter_id'].astype(float).astype(int)
|
151 |
-
|
152 |
-
a_player_dict = df_a_update.drop_duplicates(
|
153 |
-
'batter_id')[['batter_id','batter_name']].sort_values(by='batter_name').set_index('batter_id').to_dict()['batter_name']
|
154 |
-
# dom_player_dict = df_summ_dom_update.reset_index().drop_duplicates(
|
155 |
-
# 'batter_id')[['batter_id','batter_name']].sort_values(by='batter_name').set_index('batter_id').to_dict()['batter_name']
|
156 |
-
|
157 |
-
|
158 |
-
import api_scraper
|
159 |
-
mlb_stats = api_scraper.MLB_Scrape()
|
160 |
-
|
161 |
-
def get_color(value, vmin, vmax, cmap_name=cmap_sum):
|
162 |
-
# Normalize the value within the range [0, 1]
|
163 |
-
normalized_value = (value - vmin) / (vmax - vmin)
|
164 |
-
|
165 |
-
# Get the colormap
|
166 |
-
cmap = plt.get_cmap(cmap_name)
|
167 |
-
|
168 |
-
# Map the normalized value to a color in the colormap
|
169 |
-
color = cmap(normalized_value)
|
170 |
-
|
171 |
-
# Convert the color from RGBA to hexadecimal format
|
172 |
-
hex_color = mcolors.rgb2hex(color)
|
173 |
-
|
174 |
-
return hex_color
|
175 |
-
|
176 |
-
def server(input, output, session):
|
177 |
-
@render.ui
|
178 |
-
def test():
|
179 |
-
# @reactive.Effect
|
180 |
-
|
181 |
-
|
182 |
-
return ui.input_select("player_id", "Select Batter",a_player_dict,selectize=True)
|
183 |
-
# if input.my_tabs() == 'LIDOM':
|
184 |
-
# return ui.input_select("player_id", "Select Batter",dom_player_dict,selectize=True)
|
185 |
-
|
186 |
-
|
187 |
-
@output
|
188 |
-
@render.plot(alt="A Plot")
|
189 |
-
@reactive.event(input.go, ignore_none=False)
|
190 |
-
def a_plot():
|
191 |
-
### Iniput data for the level
|
192 |
-
#time.sleep(2)
|
193 |
-
df_update = df_a_update.copy()
|
194 |
-
df_summ_update = df_summ_a_update.copy()
|
195 |
-
df_summ_avg_update = df_summ_avg_a_update.copy()
|
196 |
-
if len(input.player_id()) < 1:
|
197 |
-
fig, ax = plt.subplots(1,1,figsize=(10,10))
|
198 |
-
ax.text(s='Please Select a Batter',x=0.5,y=0.5, ha='center')
|
199 |
-
ax.axis('off')
|
200 |
-
return fig
|
201 |
-
|
202 |
-
|
203 |
-
batter_select = int(input.player_id())
|
204 |
-
|
205 |
-
df_roll = df_update[df_update['batter_id']==batter_select]
|
206 |
-
if len(df_roll) == 0:
|
207 |
-
fig, ax = plt.subplots(1,1,figsize=(10,10))
|
208 |
-
ax.text(s='Card is Generating',x=0.5,y=0.5, ha='center')
|
209 |
-
ax.axis('off')
|
210 |
-
return fig
|
211 |
-
|
212 |
-
df_summ_filter = df_summ_filter_out(df_summ=df_summ_update,batter_select = batter_select)[0]
|
213 |
-
df_summ_filter_pct = df_summ_filter_out(df_summ=df_summ_update,batter_select = batter_select)[1]
|
214 |
-
df_summ_player = df_summ_filter_out(df_summ=df_summ_update,batter_select = batter_select)[2]
|
215 |
-
df_summ_player_pct = df_summ_filter_out(df_summ=df_summ_update,batter_select = batter_select)[3]
|
216 |
-
|
217 |
-
df_summ_batter_pitch = df_summ_batter_pitch_up(df= df_update).set_index(['batter_id','batter_name','pitch_category'])
|
218 |
-
|
219 |
-
|
220 |
-
df_summ_batter_pitch_pct = df_summ_batter_pitch.loc[df_summ_filter.index.get_level_values(0)]
|
221 |
-
df_summ_batter_pitch_pct = df_summ_batter_pitch_pct[df_summ_batter_pitch_pct['pitches']>0]
|
222 |
-
df_summ_batter_pitch_pct_rank = df_summ_batter_pitch_pct.groupby(level='pitch_category').apply(lambda x: x.rank(pct=True)).xs(batter_select,level=0)
|
223 |
-
|
224 |
-
df_summ_batter_pitch_pct_rank['pitch_count'] = df_summ_batter_pitch_pct_rank.index.get_level_values(1).map(df_summ_batter_pitch.xs(batter_select,level=0).reset_index().set_index('pitch_category')['pitches'].to_dict())
|
225 |
-
df_summ_batter_pitch_pct_rank = df_summ_batter_pitch_pct_rank.sort_values('pitch_count',ascending=False)
|
226 |
-
#df_summ_batter_pitch_pct_rank = df_summ_batter_pitch_pct_rank.dropna()
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
def rolling_plot(stat='k_percent',window_width=100,ax=0,df_r=df_roll,df_r_summ_avg=pd.DataFrame(),stat_plot_dict_rolling=stat_plot_dict_rolling):
|
231 |
-
plot = sns.lineplot(x=range(window_width,len(df_r[df_r[stat_plot_dict_rolling[stat]['div']]>0])+1),
|
232 |
-
y=df_r[df_r[stat_plot_dict_rolling[stat]['div']]==1].fillna(0).rolling(window=window_width)[stat_plot_dict_rolling[stat]['y']].sum().dropna()/window_width,
|
233 |
-
ax=ax,
|
234 |
-
color="#FFB000",
|
235 |
-
zorder=10)
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
# ["#0C7BDC","#FFFFFF","#FFB000"])
|
240 |
-
ax.set_xlim(window_width,len(df_r[df_r[stat_plot_dict_rolling[stat]['div']]==1]))
|
241 |
-
ax.set_xlabel(stat_plot_dict_rolling[stat]['x_label'],fontsize=8)
|
242 |
-
ax.set_ylabel(stat_plot_dict_rolling[stat]['name'],fontsize=8)
|
243 |
-
|
244 |
-
ax.hlines(df_r_summ_avg[stat_plot_dict_rolling[stat]['y']]/df_r_summ_avg[stat_plot_dict_rolling[stat]['div']],
|
245 |
-
xmin=window_width,
|
246 |
-
xmax=len(df_r[df_r[stat_plot_dict_rolling[stat]['div']]==1]),
|
247 |
-
color="#0C7BDC",linestyles='-.')
|
248 |
-
ax.hlines(sum(df_r[stat_plot_dict_rolling[stat]['y']].dropna())/sum(df_r[stat_plot_dict_rolling[stat]['div']].dropna()),
|
249 |
-
xmin=window_width,
|
250 |
-
xmax=len(df_r[df_r[stat_plot_dict_rolling[stat]['div']]==1]),
|
251 |
-
color="#FFB000",linestyles='--')
|
252 |
-
#print(sum(df_r[stat_plot_dict_rolling[stat]['y']].dropna())/sum(df_r[stat_plot_dict_rolling[stat]['div']].dropna()))
|
253 |
-
ax.tick_params(axis='x', labelsize=8) # Set x-axis ticks size
|
254 |
-
ax.tick_params(axis='y', labelsize=8) # Set y-axis ticks size
|
255 |
-
ax.set_title(f"{window_width} {stat_plot_dict_rolling[stat]['x_label']} Rolling {stat_plot_dict_rolling[stat]['name']}",fontsize=8)
|
256 |
-
ax.set_ylim(stat_plot_dict_rolling[stat]['y_min'],stat_plot_dict_rolling[stat]['y_max'])
|
257 |
-
ax.grid(True,alpha=0.2)
|
258 |
-
|
259 |
-
|
260 |
-
if stat_plot_dict_rolling[stat]['form'] == '3f':
|
261 |
-
ax.yaxis.set_major_formatter(mtick.StrMethodFormatter('{x:.3f}'))
|
262 |
-
|
263 |
-
elif stat_plot_dict_rolling[stat]['form'] == '1f':
|
264 |
-
ax.yaxis.set_major_formatter(mtick.StrMethodFormatter('{x:.1f}'))
|
265 |
-
|
266 |
-
elif stat_plot_dict_rolling[stat]['form'] == '1%':
|
267 |
-
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1))
|
268 |
-
|
269 |
-
return plot
|
270 |
-
|
271 |
-
dict_level = {1:'MLB',
|
272 |
-
11:'MiLB AAA',
|
273 |
-
12:'MiLB AA',
|
274 |
-
13:'MiLB High-A',
|
275 |
-
14:'MiLB A'}
|
276 |
-
|
277 |
-
def plot_card(sport_id_input=sport_id_input,
|
278 |
-
batter_select=batter_select,
|
279 |
-
df_roll=df_roll,
|
280 |
-
df_summ_player=df_summ_player,
|
281 |
-
df_summ_update = df_summ_update,
|
282 |
-
df_summ_batter_pitch_pct=df_summ_batter_pitch_pct,
|
283 |
-
):
|
284 |
-
|
285 |
-
#player_df = get_players(sport_id=sport_id_input)
|
286 |
-
mlb_teams = mlb_stats.get_teams()
|
287 |
-
team_logos = pd.read_csv('team_logos.csv')
|
288 |
-
if sport_id_input == 1:
|
289 |
-
player_bio = requests.get(f'https://statsapi.mlb.com/api/v1/people?personIds={batter_select}&appContext=majorLeague&hydrate=currentTeam').json()
|
290 |
-
else:
|
291 |
-
player_bio = requests.get(f'https://statsapi.mlb.com/api/v1/people?personIds={batter_select}&appContext=minorLeague&hydrate=currentTeam').json()
|
292 |
-
|
293 |
-
fig = plt.figure(figsize=(10, 10))#,dpi=600)
|
294 |
-
plt.rcParams.update({'figure.autolayout': True})
|
295 |
-
fig.set_facecolor('white')
|
296 |
-
sns.set_theme(style="whitegrid", palette="pastel")
|
297 |
-
from matplotlib.gridspec import GridSpec
|
298 |
-
gs = GridSpec(5, 5, width_ratios=[0.2,1,1,1,0.2], height_ratios=[0.6,0.05,0.15,.30,0.025])
|
299 |
-
gs.update(hspace=0.4, wspace=0.5)
|
300 |
-
|
301 |
-
# gs.update(left=0.1,right=0.9,top=0.97,bottom=0.03,wspace=0.3,hspace=0.09)
|
302 |
-
|
303 |
-
# ax1 = plt.subplot(4,1,1)
|
304 |
-
# ax2 = plt.subplot(2,2,2)
|
305 |
-
# ax3 = plt.subplot(2,2,3)
|
306 |
-
# ax4 = plt.subplot(4,1,4)
|
307 |
-
#ax2 = plt.subplot(3,3,2)
|
308 |
-
|
309 |
-
# Add subplots to the grid
|
310 |
-
ax = fig.add_subplot(gs[0, :])
|
311 |
-
#ax1 = fig.add_subplot(gs[2, 0])
|
312 |
-
# ax2 = fig.add_subplot(gs[2, :]) # Subplot at the top-right position
|
313 |
-
# fig, ax = plt.subplots(1,1,figsize=(10,12))
|
314 |
-
ax.axis('off')
|
315 |
-
|
316 |
-
width = 0.08
|
317 |
-
height = width*2.45
|
318 |
-
if df_summ_player['launch_speed'].isna().values[0]:
|
319 |
-
df_summ_player['sweet_spot_percent'] = np.nan
|
320 |
-
df_summ_player['barrel_percent'] = np.nan
|
321 |
-
df_summ_player['hard_hit_percent'] = np.nan
|
322 |
-
df_summ_player['xwoba_percent'] = np.nan
|
323 |
-
if df_summ_player['launch_speed'].isna().values[0]:
|
324 |
-
df_summ_player_pct['sweet_spot_percent'] = np.nan
|
325 |
-
df_summ_player_pct['barrel_percent'] = np.nan
|
326 |
-
df_summ_player_pct['hard_hit_percent'] = np.nan
|
327 |
-
df_summ_player_pct['xwoba_percent'] = np.nan
|
328 |
-
# x = 0.1
|
329 |
-
# y = 0.9
|
330 |
-
for cat in range(len(column_list)):
|
331 |
-
|
332 |
-
# if cat < len(column_list)/2:
|
333 |
-
x_adjust, y_adjust =(0.85/7*8)*cat/8+0.075 - (0.85/7*8)*math.floor((cat)/8), 0.45-math.floor((cat)/8)/3.2
|
334 |
-
|
335 |
-
# else:
|
336 |
-
# x_adjust, y_adjust = (cat-len(column_list)/2)*(1.7/(math.ceil((len(column_list)-1))))+0.1, 0.5
|
337 |
-
#print( x_adjust, y_adjust)
|
338 |
-
if sum(df_summ_player[column_list[cat]].isna()) < 1:
|
339 |
-
print(f'{df_summ_player[column_list[cat]].values[0]:{stat_plot_dict[column_list[cat]]["format"]}}')
|
340 |
-
ax.text(s = f'{df_summ_player[column_list[cat]].values[0]:{stat_plot_dict[column_list[cat]]["format"]}}'.format().strip(),
|
341 |
-
|
342 |
-
x = x_adjust,
|
343 |
-
y = y_adjust,
|
344 |
-
color='black',
|
345 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
346 |
-
fontsize = 16,
|
347 |
-
ha='center',
|
348 |
-
va='center')
|
349 |
-
|
350 |
-
if stat_plot_dict[column_list[cat]]['flip']:
|
351 |
-
|
352 |
-
bbox = patches.Rectangle((x_adjust- width/2,y_adjust- height/2), width, height, linewidth=1,edgecolor='black',
|
353 |
-
facecolor = get_color(df_summ_player_pct[column_list[cat]].values[0],0,1,cmap_name=cmap_sum_r))
|
354 |
-
ax.add_patch(bbox)
|
355 |
-
|
356 |
-
|
357 |
-
else:
|
358 |
-
bbox = patches.Rectangle((x_adjust- width/2,y_adjust- height/2), width, height, linewidth=1,edgecolor='black',
|
359 |
-
facecolor = get_color(df_summ_player_pct[column_list[cat]].values[0],0,1,cmap_name=cmap_sum))
|
360 |
-
ax.add_patch(bbox)
|
361 |
-
else:
|
362 |
-
print(f'{df_summ_player[column_list[cat]].values[0]:{stat_plot_dict[column_list[cat]]["format"]}}')
|
363 |
-
ax.text(s = f'{df_summ_player[column_list[cat]].fillna("N/A").values[0]}',
|
364 |
-
|
365 |
-
x = x_adjust,
|
366 |
-
y = y_adjust,
|
367 |
-
color='black',
|
368 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
369 |
-
fontsize = 14,
|
370 |
-
ha='center',
|
371 |
-
va='center')
|
372 |
-
|
373 |
-
if stat_plot_dict[column_list[cat]]['flip']:
|
374 |
-
|
375 |
-
bbox = patches.Rectangle((x_adjust- width/2,y_adjust- height/2), width, height, linewidth=1,edgecolor='black',
|
376 |
-
facecolor = get_color(df_summ_player_pct[column_list[cat]].values[0],0,1,cmap_name=cmap_sum_r))
|
377 |
-
ax.add_patch(bbox)
|
378 |
-
|
379 |
-
|
380 |
-
else:
|
381 |
-
bbox = patches.Rectangle((x_adjust- width/2,y_adjust- height/2), width, height, linewidth=1,edgecolor='black',
|
382 |
-
facecolor = get_color(df_summ_player_pct[column_list[cat]].values[0],0,1,cmap_name=cmap_sum))
|
383 |
-
ax.add_patch(bbox)
|
384 |
-
|
385 |
-
ax.text(s = stat_plot_dict[column_list[cat]]['name'],
|
386 |
-
|
387 |
-
x = x_adjust,
|
388 |
-
y = y_adjust-0.14,
|
389 |
-
color='black',
|
390 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
391 |
-
fontsize = 12,
|
392 |
-
ha='center',
|
393 |
-
va='center')
|
394 |
-
|
395 |
-
ax.text(s = f"{player_bio['people'][0]['fullName']}",
|
396 |
-
|
397 |
-
x = 0.5,
|
398 |
-
y = 0.95,
|
399 |
-
color='black',
|
400 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
401 |
-
fontsize = 28,
|
402 |
-
ha='center',
|
403 |
-
va='center')
|
404 |
-
if 'parentOrgId' in player_bio['people'][0]['currentTeam']:
|
405 |
-
|
406 |
-
ax.text(s = f"{player_bio['people'][0]['primaryPosition']['abbreviation']}, {mlb_teams[mlb_teams['team_id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['franchise'].values[0]}",
|
407 |
-
|
408 |
-
x = 0.5,
|
409 |
-
y = 0.85,
|
410 |
-
color='black',
|
411 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
412 |
-
fontsize = 14,
|
413 |
-
ha='center',
|
414 |
-
va='center')
|
415 |
-
|
416 |
-
else: ax.text(s = f"{player_bio['people'][0]['primaryPosition']['abbreviation']}, {player_bio['people'][0]['currentTeam']['name']}",
|
417 |
-
|
418 |
-
x = 0.5,
|
419 |
-
y = 0.85,
|
420 |
-
color='black',
|
421 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
422 |
-
fontsize = 14,
|
423 |
-
ha='center',
|
424 |
-
va='center')
|
425 |
-
|
426 |
-
ax.text(s =
|
427 |
-
f"B/T: {player_bio['people'][0]['batSide']['code']}/"
|
428 |
-
f"{player_bio['people'][0]['pitchHand']['code']} "
|
429 |
-
f"{player_bio['people'][0]['height']}/"
|
430 |
-
f"{player_bio['people'][0]['weight']}",
|
431 |
-
|
432 |
-
x = 0.5,
|
433 |
-
y = 0.785,
|
434 |
-
color='black',
|
435 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
436 |
-
fontsize = 14,
|
437 |
-
ha='center',
|
438 |
-
va='center')
|
439 |
-
|
440 |
-
ax.text(s =
|
441 |
-
|
442 |
-
f"DOB: {player_bio['people'][0]['birthDate']} "
|
443 |
-
f"Age: {player_bio['people'][0]['currentAge']}",
|
444 |
-
x = 0.5,
|
445 |
-
y = 0.72,
|
446 |
-
color='black',
|
447 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
448 |
-
fontsize = 14,
|
449 |
-
ha='center',
|
450 |
-
va='center')
|
451 |
-
if sport_id_input == 1:
|
452 |
-
try:
|
453 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/{batter_select}/headshot/67/current.png'
|
454 |
-
test_mage = plt.imread(url)
|
455 |
-
except urllib.error.HTTPError as err:
|
456 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/1/headshot/67/current.png'
|
457 |
-
|
458 |
-
else:
|
459 |
-
try:
|
460 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/c_fill,g_auto/w_180/v1/people/{batter_select}/headshot/milb/current.png'
|
461 |
-
test_mage = plt.imread(url)
|
462 |
-
except urllib.error.HTTPError as err:
|
463 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/1/headshot/67/current.png'
|
464 |
-
im = plt.imread(url)
|
465 |
-
# response = requests.get(url)
|
466 |
-
# im = Image.open(BytesIO(response.content), cmap='viridis')
|
467 |
-
# im = plt.imread(np.array(PIL.Image.open(urllib.request.urlopen(url))))
|
468 |
-
|
469 |
-
# ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
|
470 |
-
imagebox = OffsetImage(im, zoom = 0.3)
|
471 |
-
ab = AnnotationBbox(imagebox, (0.125, 0.8), frameon = False)
|
472 |
-
ax.add_artist(ab)
|
473 |
-
|
474 |
-
if 'parentOrgId' in player_bio['people'][0]['currentTeam']:
|
475 |
-
url = team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['imageLink'].values[0]
|
476 |
-
|
477 |
-
im = plt.imread(url)
|
478 |
-
# response = requests.get(url)
|
479 |
-
# im = Image.open(BytesIO(response.content))
|
480 |
-
# im = plt.imread(team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['imageLink'].values[0])
|
481 |
-
# ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
|
482 |
-
imagebox = OffsetImage(im, zoom = 0.225)
|
483 |
-
ab = AnnotationBbox(imagebox, (0.875, 0.8), frameon = False)
|
484 |
-
ax.add_artist(ab)
|
485 |
-
|
486 |
-
else:
|
487 |
-
url = team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['id']]['imageLink'].values[0]
|
488 |
-
im = plt.imread(team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['id']]['imageLink'].values[0])
|
489 |
-
|
490 |
-
# im = plt.imread(url)
|
491 |
-
# response = requests.get(url)
|
492 |
-
# im = Image.open(BytesIO(response.content))
|
493 |
-
#im = plt.imread(team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['imageLink'].values[0])
|
494 |
-
|
495 |
-
# ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
|
496 |
-
imagebox = OffsetImage(im, zoom = 0.225)
|
497 |
-
ab = AnnotationBbox(imagebox, (0.875, 0.8), frameon = False)
|
498 |
-
ax.add_artist(ab)
|
499 |
-
|
500 |
-
ax.text(s = f'2024 {dict_level[sport_id_input]} Metrics',
|
501 |
-
|
502 |
-
x = 0.5,
|
503 |
-
y = 0.62,
|
504 |
-
color='black',
|
505 |
-
#bbox=dict(facecolor='none', edgecolor='black', pad=10.0),
|
506 |
-
fontsize = 20,
|
507 |
-
ha='center',
|
508 |
-
va='center')
|
509 |
-
|
510 |
-
df_plot = df_summ_batter_pitch[column_list_pitch].xs([batter_select,df_summ_update.xs(batter_select,level=0).index[0]]).sort_values('pitches',ascending=False)#.dropna()
|
511 |
-
df_plot = df_plot[df_plot['pitches'] > 0]
|
512 |
-
|
513 |
-
df_plot_pct = df_summ_batter_pitch_pct[column_list_pitch].xs([batter_select,df_summ_update.xs(batter_select,level=0).index[0]]).sort_values('pitches',ascending=False)#.dropna()
|
514 |
-
|
515 |
-
value = 1
|
516 |
-
# Normalize the value
|
517 |
-
colormap = plt.get_cmap(cmap_sum)
|
518 |
-
colormap_r = plt.get_cmap(cmap_sum_r)
|
519 |
-
norm = Normalize(vmin=0, vmax=1)
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
col_5_colour = [colormap_r(norm(x)) for x in list((df_summ_batter_pitch_pct_rank['chase_percent']))]
|
524 |
-
col_4_colour = [colormap_r(norm(x)) for x in list((df_summ_batter_pitch_pct_rank['whiff_rate']))]
|
525 |
-
col_3_colour = [colormap(norm(x)) for x in list((df_summ_batter_pitch_pct_rank['woba_percent_contact']))]
|
526 |
-
col_2_colour = ['white']*len(df_summ_batter_pitch_pct_rank)
|
527 |
-
col_1_colour = ['white']*len(df_summ_batter_pitch_pct_rank)
|
528 |
-
colour_df = pd.DataFrame(data=[col_1_colour,col_2_colour,col_3_colour,col_4_colour,col_5_colour]).T.values
|
529 |
-
|
530 |
-
ax_table = fig.add_subplot(gs[2, 1:-1])
|
531 |
-
ax_table.axis('off')
|
532 |
-
print(colour_df)
|
533 |
-
print(df_plot)
|
534 |
-
table = ax_table.table(cellText=df_plot.values, colLabels=[stat_plot_dict[x]['name'] for x in df_plot.columns],rowLabels=df_plot.index, cellLoc='center',
|
535 |
-
bbox=[0.13, 0.0, 0.79, 1],colWidths=[0.1]*len(df_plot.columns),
|
536 |
-
loc='center',cellColours=colour_df)
|
537 |
-
ax_table.text(x=0.5,y=1.1,s='Metrics By Pitch Type',ha='center',fontdict={ 'size': 12},fontname='arial')
|
538 |
-
|
539 |
-
w, h = table[0,1].get_width(), table[0,1].get_height()
|
540 |
-
cell_i = table.add_cell(0, -1, w,h, text='Pitch Type')
|
541 |
-
cell_i.get_text().set_horizontalalignment('left')
|
542 |
-
min_font_size = 12
|
543 |
-
# Set table properties
|
544 |
-
|
545 |
-
table.auto_set_font_size(False)
|
546 |
-
table.set_fontsize(min_font_size)
|
547 |
-
#table.set_fontname('arial')
|
548 |
-
table.scale(1, len(df_plot)*0.3)
|
549 |
-
|
550 |
-
|
551 |
-
int_list = ['pitches','bip']
|
552 |
-
for fl in int_list:
|
553 |
-
# Subset of column names
|
554 |
-
subset_columns = [fl]
|
555 |
-
|
556 |
-
# Get the list of column indices
|
557 |
-
column_indices = [df_plot.columns.get_loc(col) for col in subset_columns]
|
558 |
-
|
559 |
-
# # print(column_indices)
|
560 |
-
for row_l in range(1,len(df_plot)+1):
|
561 |
-
# print(row_l)
|
562 |
-
if table.get_celld()[(row_l,column_indices[0])].get_text().get_text() != '—':
|
563 |
-
# print()
|
564 |
-
# print(fl)
|
565 |
-
table.get_celld()[(row_l,column_indices[0])].get_text().set_text('{:,.0f}'.format(float(table.get_celld()[(row_l,column_indices[0])].get_text().get_text().strip('%'))))
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
float_3_list = ['xwoba_percent']
|
570 |
-
for fl in float_3_list:
|
571 |
-
# Subset of column names
|
572 |
-
subset_columns = [fl]
|
573 |
-
|
574 |
-
# Get the list of column indices
|
575 |
-
column_indices = [df_plot.columns.get_loc(col) for col in subset_columns]
|
576 |
-
|
577 |
-
# # print(column_indices)
|
578 |
-
for row_l in range(1,len(df_plot)+1):
|
579 |
-
# print(row_l)
|
580 |
-
if table.get_celld()[(row_l,column_indices[0])].get_text().get_text() != '—':
|
581 |
-
# print()
|
582 |
-
# print(fl)
|
583 |
-
table.get_celld()[(row_l,column_indices[0])].get_text().set_text('{:,.3f}'.format(float(table.get_celld()[(row_l,column_indices[0])].get_text().get_text().strip('%'))))
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
percent_list = ['whiff_rate','chase_percent']
|
588 |
-
|
589 |
-
|
590 |
-
for fl in percent_list:
|
591 |
-
# Subset of column names
|
592 |
-
subset_columns = [fl]
|
593 |
-
|
594 |
-
# Get the list of column indices
|
595 |
-
column_indices = [df_plot.columns.get_loc(col) for col in subset_columns]
|
596 |
-
|
597 |
-
# # print(column_indices)
|
598 |
-
for row_l in range(1,len(df_plot)+1):
|
599 |
-
# print(row_l)
|
600 |
-
if table.get_celld()[(row_l,column_indices[0])].get_text().get_text() != '—':
|
601 |
-
|
602 |
-
# print(fl)
|
603 |
-
table.get_celld()[(row_l,column_indices[0])].get_text().set_text('{:,.1%}'.format(float(table.get_celld()[(row_l,column_indices[0])].get_text().get_text().strip('%'))))
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
stat_1 = input.stat_1()
|
608 |
-
window_width_1 = input.window_1()
|
609 |
-
stat_2 = input.stat_2()
|
610 |
-
window_width_2 = input.window_2()
|
611 |
-
stat_3 = input.stat_3()
|
612 |
-
window_width_3 = input.window_3()
|
613 |
-
|
614 |
-
|
615 |
-
inset_ax = ax = fig.add_subplot(gs[3, 1])
|
616 |
-
rolling_plot(stat=stat_1,window_width=window_width_1,ax=inset_ax,df_r=df_roll,df_r_summ_avg=df_summ_avg_update)
|
617 |
-
|
618 |
-
inset_ax = ax = fig.add_subplot(gs[3, 2])
|
619 |
-
rolling_plot(stat=stat_2,window_width=window_width_2,ax=inset_ax,df_r=df_roll,df_r_summ_avg=df_summ_avg_update)
|
620 |
-
|
621 |
-
inset_ax = ax = fig.add_subplot(gs[3, 3])
|
622 |
-
rolling_plot(stat=stat_3,window_width=window_width_3,ax=inset_ax,df_r=df_roll,df_r_summ_avg=df_summ_avg_update)
|
623 |
-
|
624 |
-
ax_bot = ax = fig.add_subplot(gs[4, :])
|
625 |
-
|
626 |
-
ax_bot.text(x=0.05,y=-0.5,s='By: @TJStats',ha='left',fontdict={ 'size': 14},fontname='arial')
|
627 |
-
ax_bot.text(x=1-0.05,y=-0.5,s='Data: MLB',ha='right',fontdict={ 'size': 14},fontname='arial')
|
628 |
-
ax_bot.axis('off')
|
629 |
-
|
630 |
-
|
631 |
-
ax_cbar = fig.add_subplot(gs[1,1:-1])
|
632 |
-
|
633 |
-
cb = matplotlib.colorbar.ColorbarBase(ax_cbar, orientation='horizontal',
|
634 |
-
cmap=cmap_sum)
|
635 |
-
#ax_cbar.axis('off')
|
636 |
-
ax_cbar.text(x=0.5,y=1.2,s='Colour Scale - Percentiles',ha='center',fontdict={ 'size': 12},fontname='arial')
|
637 |
-
ax_cbar.text(s='0%',x=0.01,y=0.5,va='center',ha='left')
|
638 |
-
ax_cbar.text(s='100%',x=0.99,y=0.5,va='center',ha='right')
|
639 |
-
# ax_cbar.text(s='50%',x=0.5,y=0.5,va='center',ha='center')
|
640 |
-
# ax_cbar.text(s='50%',x=0.5,y=0.5,va='center',ha='center')
|
641 |
-
# ax_cbar.text(s='50%',x=0.5,y=0.5,va='center',ha='center')
|
642 |
-
ax_cbar.set_xticks([])
|
643 |
-
ax_cbar.set_yticks([])
|
644 |
-
ax_cbar.set_xticklabels([])
|
645 |
-
ax_cbar.set_yticklabels([])
|
646 |
-
|
647 |
-
# Display only the outline of the axis
|
648 |
-
for spine in ax_cbar.spines.values():
|
649 |
-
spine.set_visible(True) # Show only the outline
|
650 |
-
spine.set_color('black') # Set the color to black
|
651 |
-
|
652 |
-
# fig.set_facecolor('#ffffff')
|
653 |
-
|
654 |
-
return fig.subplots_adjust(left=0.03, right=0.97, top=0.95, bottom=0.05)
|
655 |
-
|
656 |
-
|
657 |
-
return plot_card(sport_id_input=sport_id_input,
|
658 |
-
batter_select=batter_select,
|
659 |
-
df_roll=df_roll,
|
660 |
-
df_summ_player=df_summ_player,
|
661 |
-
df_summ_batter_pitch_pct=df_summ_batter_pitch_pct,
|
662 |
-
)
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
app = App(ui.page_fluid(
|
671 |
-
# ui.tags.base(href=base_url),
|
672 |
-
ui.tags.div(
|
673 |
-
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
|
674 |
-
ui.tags.style(
|
675 |
-
"""
|
676 |
-
h4 {
|
677 |
-
margin-top: 1em;font-size:35px;
|
678 |
-
}
|
679 |
-
h2{
|
680 |
-
font-size:25px;
|
681 |
-
}
|
682 |
-
"""
|
683 |
-
),
|
684 |
-
shinyswatch.theme.simplex(),
|
685 |
-
ui.tags.h4("TJStats"),
|
686 |
-
ui.tags.i("Baseball Analytics and Visualizations"),
|
687 |
-
ui.row(
|
688 |
-
ui.layout_sidebar(
|
689 |
-
|
690 |
-
ui.panel_sidebar(ui.output_ui('test',"Select Batter"),
|
691 |
-
ui.input_select('stat_1',"Select Rolling Stat 1",stat_roll_dict,selectize=True),
|
692 |
-
ui.input_numeric('window_1',"Select Rolling Window 1",value=100),
|
693 |
-
ui.input_select('stat_2',"Select Rolling Stat 2",stat_roll_dict,selected='k_percent',selectize=True),
|
694 |
-
ui.input_numeric('window_2',"Select Rolling Stat 2",value=100),
|
695 |
-
ui.input_select('stat_3',"Select Rolling Stat 3",stat_roll_dict,selected='bb_percent',selectize=True),
|
696 |
-
ui.input_numeric('window_3',"Select Rolling Stat 3",value=100),
|
697 |
-
ui.input_action_button("go", "Generate",class_="btn-primary"),width=2),
|
698 |
-
|
699 |
-
ui.page_navbar(
|
700 |
-
|
701 |
-
ui.nav_panel("Player Cards",
|
702 |
-
ui.output_plot('a_plot',width='1000px',height='1000px')),
|
703 |
-
id="my_tabs",
|
704 |
-
))),)),server)
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
# app = App(app_ui, server)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|