File size: 16,007 Bytes
519b419
 
8c99444
 
519b419
 
8da674b
519b419
8c99444
519b419
 
 
 
 
 
 
 
 
 
8c99444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519b419
 
8c99444
 
519b419
 
 
 
 
 
8c99444
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f832cf5
 
 
 
 
8da674b
 
 
519b419
 
8da674b
 
519b419
 
 
 
 
8da674b
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f832cf5
 
519b419
 
 
f832cf5
8da674b
 
 
 
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da674b
519b419
 
 
8da674b
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da674b
f832cf5
 
519b419
 
 
 
 
 
f832cf5
519b419
 
 
 
 
 
 
 
 
 
 
8da674b
f832cf5
519b419
f832cf5
519b419
 
 
 
 
 
f832cf5
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da674b
f832cf5
519b419
 
8c99444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519b419
 
 
 
8c99444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519b419
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import requests.exceptions
import zipfile

import streamlit as st
from streamlit.components.v1 import html
from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)
from n4a_analytics_lib.constants import (DESCRIPTION)


# Set application
st.set_page_config(layout="wide")
# sidebar: meta, inputs etc.
sidebar = st.sidebar
# cols: display results
col1, col2 = st.columns(2)

# description
sidebar.markdown(DESCRIPTION)




# to st components
#def clear_cache():
#    st.session_state = {}

def check_login(username, password):
    if (len(username) == 0) or (len(password) == 0):
        return False
    return True

def logout():
    pass






# Level to analyze
option = sidebar.selectbox('Which statistics level?', ('Inter-Annotator Agreement results',
                                                       'Global project statistics'))

# IAA results view
if option == "Inter-Annotator Agreement results":
    annotations = sidebar.file_uploader("Upload IAA annotations (.zip format only): ")
    baseline_text = sidebar.file_uploader("Upload baseline text (.txt format only): ")


    if baseline_text is not None and annotations is not None:
        project_analyzed = IaaStatistics(zip_project=annotations, baseline_text=baseline_text.getvalue())
        baseline_analyzer = project_analyzed.analyze_text()

        col2.markdown(f"""
        ### BASELINE TEXT: {baseline_text.name}

         - sentences:  {baseline_analyzer[0]}
         - words: {baseline_analyzer[1]}
         - characters: {baseline_analyzer[2]}
        """)




        #print(project_analyzed.annotations_per_coders)

        commune_mentions = [l for i,j in project_analyzed.mentions_per_coder.items() for l in j]
        commune_mentions = list(dict.fromkeys(commune_mentions))
        #print(commune_mentions)
        #print(project_analyzed.annotations)
        #print(project_analyzed.labels_per_coder)
        import pandas as pd
        from collections import defaultdict, Counter
        from itertools import combinations
        import seaborn as sn
        import matplotlib as plt
        import matplotlib.pyplot as pylt

        dicts_coders = []
        for coder, annotations in project_analyzed.annotations_per_coders.items():
            nombre_annotations = []
            # print(f'* {coder}')
            for annotation, label in annotations.items():
                nombre_annotations.append(label)
            # print(f"Nombre total d'annotations : {len(nombre_annotations)}")
            dict_coder = dict(Counter(nombre_annotations))
            dicts_coders.append(dict_coder)
            # print(f'==========================')

        labels = [label for label in dicts_coders[0]]

        from n4a_analytics_lib.metrics_utils import interpret_kappa, fleiss_kappa_function, cohen_kappa_function
        df = pd.DataFrame(project_analyzed.annotations_per_coders, index=commune_mentions)

        for ann in project_analyzed.annotators:
            df[ann] = 'None'
            for mention, value in project_analyzed.annotations_per_coders[ann].items():
                df.loc[mention, ann] = value

        total_annotations = len(df)

        # print(f'* Total des annotations : {total_annotations}')

        df_n = df.apply(pd.Series.value_counts, 1).fillna(0).astype(int)
        matrix = df_n.values

        pairs = list(combinations(project_analyzed.annotations_per_coders, 2))

        # Display in app
        #cont_kappa = st.container()
        st.title("Inter-Annotator Agreement (IAA) results")
        #tab1, tab2, tab3, tab4, tab5 = st.tabs(
        #    ["📈 IAA metrics", "🗃 IAA Metrics Legend", "✔️ Agree annotations", "❌ Disagree annotations",
        #     "🏷️ Global Labels Statistics"])
        st.markdown("## 📈 IAA metrics")
        col1_kappa, col2_kappa = st.columns(2)
        col1_kappa.subheader("Fleiss Kappa (global score for group):")


        col1_kappa.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
        col1_kappa.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
        # tab1.dataframe(df)
        data = []
        for coder_1, coder_2 in pairs:
            cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
            data.append(((coder_1, coder_2), cohen_function))
            col1_kappa.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
            # print(f"* {coder_1} <> {coder_2} : {cohen_function}")

        intermediary = defaultdict(Counter)
        for (src, tgt), count in data:
            intermediary[src][tgt] = count

        letters = sorted({key for inner in intermediary.values() for key in inner} | set(intermediary.keys()))

        confusion_matrix = [[intermediary[src][tgt] for tgt in letters] for src in letters]
        import numpy as np

        df_cm = pd.DataFrame(confusion_matrix, letters, letters)
        mask = df_cm.values == 0
        sn.set(font_scale=0.7)  # for label size
        colors = ["#e74c3c", "#f39c12", "#f4d03f", "#5dade2", "#58d68d", "#28b463"]
        width = st.slider("matrix width", 1, 10, 14)
        height = st.slider("matrix height", 1, 10, 4)
        fig, ax = pylt.subplots(figsize=(width, height))
        sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax)  # font size
        # plt.show()
        st.pyplot(ax.figure)
        col2_kappa.markdown("""
        <div>
        <div id="legend" style="right: 70em;">
        <h3>🗃 IAA Metrics Legend</h3>
        <table>
        <thead>
        <tr>
        <th
        colspan="2"> Kappa
        interpretation
        legend </th>
                   </tr>
                       </thead>
                           <tbody>
                           <tr>
                           <td> Kappa
        score(k) </td>
                     <td>Agreement</td>
                                          </tr>
                                              <tr
        style = "background-color: #e74c3c;">
                <td> k < 0 </td>
                                 <td> Less
        chance
        agreement </td>
                      </tr>
                          <tr
        style = "background-color: #f39c12;">
                <td> 0.01 < k < 0.20 </td>
                                           <td> Slight
        agreement </td>
                      </tr>
                          <tr
        style = "background-color: #f4d03f;">
                <td> 0.21 < k < 0.40 </td>
                                           <td> Fair
        agreement </td>
                      </tr>
                          <tr
        style = "background-color:  #5dade2;">
                <td> 0.41 < k < 0.60 </td>
                                           <td> Moderate
        agreement </td>
                      </tr>
                          <tr
        style = "background-color:  #58d68d;">
                <td> 0.61 < k < 0.80 </td>
                                           <td> Substantial
        agreement </td>
                      </tr>
                          <tr
        style = "background-color:  #28b463;">
                <td> 0.81 < k < 0.99 </td>
                                           <td> Almost
        perfect
        agreement </td>
                      </tr>
                          </tbody>
                              </table></div></div>"""

        , unsafe_allow_html = True)


        ## commune
        @st.cache
        def convert_df(df_ex):
            return df_ex.to_csv(encoding="utf-8").encode('utf-8')


        ## Agree part

        columns_to_compare = project_analyzed.annotators


        def check_all_equal(iterator):
            return len(set(iterator)) <= 1


        df_agree = df[df[columns_to_compare].apply(lambda row: check_all_equal(row), axis=1)]
        total_unanime = len(df_agree)

        csv_agree = convert_df(df_agree)

        st.subheader("✔️ Agree annotations")
        st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
        st.download_button(
            "Press to Download CSV",
            csv_agree,
            "csv_annotators_agree.csv",
            "text/csv",
            key='download-csv-1'
        )
        st.dataframe(df_agree)


        ## Disagree part

        def check_all_not_equal(iterator):
            return len(set(iterator)) > 1


        df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
        total_desaccord = len(df_disagree)
        csv_disagree = convert_df(df_disagree)
        st.subheader("❌ Disagree annotations")
        st.markdown(
            f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
        st.download_button(
            "Press to Download CSV",
            csv_disagree,
            "csv_annotators_disagree.csv",
            "text/csv",
            key='download-csv-2'
        )
        st.dataframe(df_disagree)


        ## alignement chart labels
        def count_total_annotations_label(dataframe, labels):
            pairs = []
            for label in labels:
                total = dataframe.astype(object).eq(label).any(1).sum()
                pairs.append((label, total))
            return pairs


        totals_annotations_per_labels = count_total_annotations_label(df, labels)


        # Récupérer le nombre de mention portant la même classe selon les annotateurs

        def total_agree_disagree_per_label(dataframe, pairs_totals_labels):
            new_pairs = []
            for t in pairs_totals_labels:
                # t[0] : label
                # t[1] : total_rows_with_label
                agree_res = df[df.nunique(1).eq(1)].eq(t[0]).any(1).sum()
                disagree_res = t[1] - agree_res
                agree_percent = (agree_res / t[1]) * 100
                disagree_percent = (disagree_res / t[1]) * 100
                new_pairs.append((t[0], t[1], agree_percent, disagree_percent))
            return new_pairs

        to_pie = total_agree_disagree_per_label(df, totals_annotations_per_labels)


        def plot_pies(tasks_to_pie):
         my_labels = 'agree', 'disagree'
         my_colors = ['#47DBCD', '#F5B14C']
         my_explode = (0, 0.1)
         counter = 0
         fig, axes = pylt.subplots(1, len(tasks_to_pie), figsize=(20, 3))
         for t in tasks_to_pie:
             tasks = [t[2], t[3]]
             axes[counter].pie(tasks, autopct='%1.1f%%', startangle=15, shadow=True, colors=my_colors,
                               explode=my_explode)
             axes[counter].set_title(t[0])
             axes[counter].axis('equal')
             counter += 1
         fig.set_facecolor("white")
         fig.legend(labels=my_labels, loc="center right", borderaxespad=0.1, title="Labels alignement")
         # plt.savefig(f'./out/pie_alignement_labels_{filename_no_extension}.png', dpi=400)
         return fig

        f = plot_pies(to_pie)
        st.subheader("🏷️ Global Labels Statistics")
        st.pyplot(f.figure)

# global project results view
# st_session = {"gs_local":True, "gs_remote":False, "gs_obj":<object>}

def display_data():
    col1.metric("Total curated annotations",
                f"{st.session_state['gs_obj'].total_annotations_project} Named entities")
    col1.dataframe(st.session_state['gs_obj'].df_i)
    selected_data = col1.selectbox('Select specific data to display bar plot:',
                                   st.session_state['gs_obj'].documents, key="selector_data")
    col2.pyplot(st.session_state['gs_obj'].create_plot(selected_data))

def init_session_statistics(remote: bool, local: bool, data: tuple) -> None:
    # clear session
    st.session_state = {}

    # create a session variable
    st.session_state["gs_local"] = local
    st.session_state["gs_remote"] = remote

    # create a new object:
    # if remote fetch data from API Host first
    if remote and not(local):
        st.success('Fetch curated documents from host INCEpTION API in progress...')
        fetch_curated_data_from_remote(
                username=data[0],
                password=data[1]
        )

    if local and not(remote):
        st.session_state["gs_obj"] = GlobalStatistics(zip_project=data, remote=False)





from pycaprio import Pycaprio, mappings
from zipfile import ZipFile
import io
import requests

def fetch_curated_data_from_remote(username: str,
                                   password: str,
                                   endpoint: str = "https://inception.dhlab.epfl.ch/prod",
                                   project_title: str = "ner4archives-template"):
    # open a client
    try:
        client = Pycaprio(inception_host=endpoint, authentication=(str(username), str(password)))
    except requests.exceptions.JSONDecodeError:
        # username / password incorrect
        st.error('Username or Password is incorrect please retry.')

    # get project object
    project_name = [p for p in client.api.projects() if p.project_name == project_title]

    # get all documents from project
    documents = client.api.documents(project_name[0].project_id)

    curations = []
    zipfiles = []
    count = 0
    flag = "a"
    # iterate over all documents and retrieve only curated into ZIP container
    for document in documents:
        if count > 0:
            flag = "r"
        if document.document_state == mappings.DocumentState.CURATION_COMPLETE:
            curated_content = client.api.curation(project_name[0].project_id, document,
                                                  curation_format=mappings.InceptionFormat.UIMA_CAS_XMI_XML_1_1)
            curations.append(curated_content)
            for curation in curations:
                z = ZipFile(io.BytesIO(curation), mode=flag)
                zipfiles.append(z)

        count += 1

    # Merge all zip in one
    with zipfiles[0] as z1:
        for fname in zipfiles[1:]:
            zf = fname
            # print(zf.namelist())
            for n in zf.namelist():
                if n not in z1.namelist():
                    z1.writestr(n, zf.open(n).read())

        # Create a new object
        st.session_state["gs_obj"] = GlobalStatistics(zip_project=z1, remote=True)




if option == "Global project statistics":
    # User input controllers
    mode = sidebar.radio("Choose mode to retrieve curated data: ", (
        "Local directory", "INCEpTION API Host remote"
    ))
    data = None
    if mode == "Local directory":
        project = sidebar.file_uploader("Folder that contains curated annotations in XMI 1.1 (.zip format only): ",
                                        type="zip")
        data = project
    if mode == "INCEpTION API Host remote":
        username = sidebar.text_input("Username: ")
        password = sidebar.text_input("Password: ", type="password")
        data = (username, password)

    # Validate inputs
    btn_process = sidebar.button('Process', key='process')

    # Access data with local ressources
    if btn_process and mode == "Local directory":
        if data is not None:
            # create a new session
            init_session_statistics(remote=False, local=True, data=data)

    # Access data with remote ressources
    if btn_process and mode == "API Host remote":
        if data is not None:
            if check_login(username=data[0], password=data[1]):
                # create a new session
                init_session_statistics(remote=True, local=False, data=data)
            else:
              st.error("Sorry! Username or Password is empty.")

    # Change data values and visualize new plot
    if "gs_obj" in st.session_state:
        if st.session_state["gs_local"] or st.session_state["gs_remote"]:
            display_data()