Spaces:
Sleeping
Sleeping
File size: 16,007 Bytes
519b419 8c99444 519b419 8da674b 519b419 8c99444 519b419 8c99444 519b419 8c99444 519b419 8c99444 519b419 f832cf5 8da674b 519b419 8da674b 519b419 8da674b 519b419 f832cf5 519b419 f832cf5 8da674b 519b419 8da674b 519b419 8da674b 519b419 8da674b f832cf5 519b419 f832cf5 519b419 8da674b f832cf5 519b419 f832cf5 519b419 f832cf5 519b419 8da674b f832cf5 519b419 8c99444 519b419 8c99444 519b419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import requests.exceptions
import zipfile
import streamlit as st
from streamlit.components.v1 import html
from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)
from n4a_analytics_lib.constants import (DESCRIPTION)
# Set application
st.set_page_config(layout="wide")
# sidebar: meta, inputs etc.
sidebar = st.sidebar
# cols: display results
col1, col2 = st.columns(2)
# description
sidebar.markdown(DESCRIPTION)
# to st components
#def clear_cache():
# st.session_state = {}
def check_login(username, password):
if (len(username) == 0) or (len(password) == 0):
return False
return True
def logout():
pass
# Level to analyze
option = sidebar.selectbox('Which statistics level?', ('Inter-Annotator Agreement results',
'Global project statistics'))
# IAA results view
if option == "Inter-Annotator Agreement results":
annotations = sidebar.file_uploader("Upload IAA annotations (.zip format only): ")
baseline_text = sidebar.file_uploader("Upload baseline text (.txt format only): ")
if baseline_text is not None and annotations is not None:
project_analyzed = IaaStatistics(zip_project=annotations, baseline_text=baseline_text.getvalue())
baseline_analyzer = project_analyzed.analyze_text()
col2.markdown(f"""
### BASELINE TEXT: {baseline_text.name}
- sentences: {baseline_analyzer[0]}
- words: {baseline_analyzer[1]}
- characters: {baseline_analyzer[2]}
""")
#print(project_analyzed.annotations_per_coders)
commune_mentions = [l for i,j in project_analyzed.mentions_per_coder.items() for l in j]
commune_mentions = list(dict.fromkeys(commune_mentions))
#print(commune_mentions)
#print(project_analyzed.annotations)
#print(project_analyzed.labels_per_coder)
import pandas as pd
from collections import defaultdict, Counter
from itertools import combinations
import seaborn as sn
import matplotlib as plt
import matplotlib.pyplot as pylt
dicts_coders = []
for coder, annotations in project_analyzed.annotations_per_coders.items():
nombre_annotations = []
# print(f'* {coder}')
for annotation, label in annotations.items():
nombre_annotations.append(label)
# print(f"Nombre total d'annotations : {len(nombre_annotations)}")
dict_coder = dict(Counter(nombre_annotations))
dicts_coders.append(dict_coder)
# print(f'==========================')
labels = [label for label in dicts_coders[0]]
from n4a_analytics_lib.metrics_utils import interpret_kappa, fleiss_kappa_function, cohen_kappa_function
df = pd.DataFrame(project_analyzed.annotations_per_coders, index=commune_mentions)
for ann in project_analyzed.annotators:
df[ann] = 'None'
for mention, value in project_analyzed.annotations_per_coders[ann].items():
df.loc[mention, ann] = value
total_annotations = len(df)
# print(f'* Total des annotations : {total_annotations}')
df_n = df.apply(pd.Series.value_counts, 1).fillna(0).astype(int)
matrix = df_n.values
pairs = list(combinations(project_analyzed.annotations_per_coders, 2))
# Display in app
#cont_kappa = st.container()
st.title("Inter-Annotator Agreement (IAA) results")
#tab1, tab2, tab3, tab4, tab5 = st.tabs(
# ["📈 IAA metrics", "🗃 IAA Metrics Legend", "✔️ Agree annotations", "❌ Disagree annotations",
# "🏷️ Global Labels Statistics"])
st.markdown("## 📈 IAA metrics")
col1_kappa, col2_kappa = st.columns(2)
col1_kappa.subheader("Fleiss Kappa (global score for group):")
col1_kappa.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
col1_kappa.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
# tab1.dataframe(df)
data = []
for coder_1, coder_2 in pairs:
cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
data.append(((coder_1, coder_2), cohen_function))
col1_kappa.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
# print(f"* {coder_1} <> {coder_2} : {cohen_function}")
intermediary = defaultdict(Counter)
for (src, tgt), count in data:
intermediary[src][tgt] = count
letters = sorted({key for inner in intermediary.values() for key in inner} | set(intermediary.keys()))
confusion_matrix = [[intermediary[src][tgt] for tgt in letters] for src in letters]
import numpy as np
df_cm = pd.DataFrame(confusion_matrix, letters, letters)
mask = df_cm.values == 0
sn.set(font_scale=0.7) # for label size
colors = ["#e74c3c", "#f39c12", "#f4d03f", "#5dade2", "#58d68d", "#28b463"]
width = st.slider("matrix width", 1, 10, 14)
height = st.slider("matrix height", 1, 10, 4)
fig, ax = pylt.subplots(figsize=(width, height))
sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax) # font size
# plt.show()
st.pyplot(ax.figure)
col2_kappa.markdown("""
<div>
<div id="legend" style="right: 70em;">
<h3>🗃 IAA Metrics Legend</h3>
<table>
<thead>
<tr>
<th
colspan="2"> Kappa
interpretation
legend </th>
</tr>
</thead>
<tbody>
<tr>
<td> Kappa
score(k) </td>
<td>Agreement</td>
</tr>
<tr
style = "background-color: #e74c3c;">
<td> k < 0 </td>
<td> Less
chance
agreement </td>
</tr>
<tr
style = "background-color: #f39c12;">
<td> 0.01 < k < 0.20 </td>
<td> Slight
agreement </td>
</tr>
<tr
style = "background-color: #f4d03f;">
<td> 0.21 < k < 0.40 </td>
<td> Fair
agreement </td>
</tr>
<tr
style = "background-color: #5dade2;">
<td> 0.41 < k < 0.60 </td>
<td> Moderate
agreement </td>
</tr>
<tr
style = "background-color: #58d68d;">
<td> 0.61 < k < 0.80 </td>
<td> Substantial
agreement </td>
</tr>
<tr
style = "background-color: #28b463;">
<td> 0.81 < k < 0.99 </td>
<td> Almost
perfect
agreement </td>
</tr>
</tbody>
</table></div></div>"""
, unsafe_allow_html = True)
## commune
@st.cache
def convert_df(df_ex):
return df_ex.to_csv(encoding="utf-8").encode('utf-8')
## Agree part
columns_to_compare = project_analyzed.annotators
def check_all_equal(iterator):
return len(set(iterator)) <= 1
df_agree = df[df[columns_to_compare].apply(lambda row: check_all_equal(row), axis=1)]
total_unanime = len(df_agree)
csv_agree = convert_df(df_agree)
st.subheader("✔️ Agree annotations")
st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
st.download_button(
"Press to Download CSV",
csv_agree,
"csv_annotators_agree.csv",
"text/csv",
key='download-csv-1'
)
st.dataframe(df_agree)
## Disagree part
def check_all_not_equal(iterator):
return len(set(iterator)) > 1
df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
total_desaccord = len(df_disagree)
csv_disagree = convert_df(df_disagree)
st.subheader("❌ Disagree annotations")
st.markdown(
f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
st.download_button(
"Press to Download CSV",
csv_disagree,
"csv_annotators_disagree.csv",
"text/csv",
key='download-csv-2'
)
st.dataframe(df_disagree)
## alignement chart labels
def count_total_annotations_label(dataframe, labels):
pairs = []
for label in labels:
total = dataframe.astype(object).eq(label).any(1).sum()
pairs.append((label, total))
return pairs
totals_annotations_per_labels = count_total_annotations_label(df, labels)
# Récupérer le nombre de mention portant la même classe selon les annotateurs
def total_agree_disagree_per_label(dataframe, pairs_totals_labels):
new_pairs = []
for t in pairs_totals_labels:
# t[0] : label
# t[1] : total_rows_with_label
agree_res = df[df.nunique(1).eq(1)].eq(t[0]).any(1).sum()
disagree_res = t[1] - agree_res
agree_percent = (agree_res / t[1]) * 100
disagree_percent = (disagree_res / t[1]) * 100
new_pairs.append((t[0], t[1], agree_percent, disagree_percent))
return new_pairs
to_pie = total_agree_disagree_per_label(df, totals_annotations_per_labels)
def plot_pies(tasks_to_pie):
my_labels = 'agree', 'disagree'
my_colors = ['#47DBCD', '#F5B14C']
my_explode = (0, 0.1)
counter = 0
fig, axes = pylt.subplots(1, len(tasks_to_pie), figsize=(20, 3))
for t in tasks_to_pie:
tasks = [t[2], t[3]]
axes[counter].pie(tasks, autopct='%1.1f%%', startangle=15, shadow=True, colors=my_colors,
explode=my_explode)
axes[counter].set_title(t[0])
axes[counter].axis('equal')
counter += 1
fig.set_facecolor("white")
fig.legend(labels=my_labels, loc="center right", borderaxespad=0.1, title="Labels alignement")
# plt.savefig(f'./out/pie_alignement_labels_{filename_no_extension}.png', dpi=400)
return fig
f = plot_pies(to_pie)
st.subheader("🏷️ Global Labels Statistics")
st.pyplot(f.figure)
# global project results view
# st_session = {"gs_local":True, "gs_remote":False, "gs_obj":<object>}
def display_data():
col1.metric("Total curated annotations",
f"{st.session_state['gs_obj'].total_annotations_project} Named entities")
col1.dataframe(st.session_state['gs_obj'].df_i)
selected_data = col1.selectbox('Select specific data to display bar plot:',
st.session_state['gs_obj'].documents, key="selector_data")
col2.pyplot(st.session_state['gs_obj'].create_plot(selected_data))
def init_session_statistics(remote: bool, local: bool, data: tuple) -> None:
# clear session
st.session_state = {}
# create a session variable
st.session_state["gs_local"] = local
st.session_state["gs_remote"] = remote
# create a new object:
# if remote fetch data from API Host first
if remote and not(local):
st.success('Fetch curated documents from host INCEpTION API in progress...')
fetch_curated_data_from_remote(
username=data[0],
password=data[1]
)
if local and not(remote):
st.session_state["gs_obj"] = GlobalStatistics(zip_project=data, remote=False)
from pycaprio import Pycaprio, mappings
from zipfile import ZipFile
import io
import requests
def fetch_curated_data_from_remote(username: str,
password: str,
endpoint: str = "https://inception.dhlab.epfl.ch/prod",
project_title: str = "ner4archives-template"):
# open a client
try:
client = Pycaprio(inception_host=endpoint, authentication=(str(username), str(password)))
except requests.exceptions.JSONDecodeError:
# username / password incorrect
st.error('Username or Password is incorrect please retry.')
# get project object
project_name = [p for p in client.api.projects() if p.project_name == project_title]
# get all documents from project
documents = client.api.documents(project_name[0].project_id)
curations = []
zipfiles = []
count = 0
flag = "a"
# iterate over all documents and retrieve only curated into ZIP container
for document in documents:
if count > 0:
flag = "r"
if document.document_state == mappings.DocumentState.CURATION_COMPLETE:
curated_content = client.api.curation(project_name[0].project_id, document,
curation_format=mappings.InceptionFormat.UIMA_CAS_XMI_XML_1_1)
curations.append(curated_content)
for curation in curations:
z = ZipFile(io.BytesIO(curation), mode=flag)
zipfiles.append(z)
count += 1
# Merge all zip in one
with zipfiles[0] as z1:
for fname in zipfiles[1:]:
zf = fname
# print(zf.namelist())
for n in zf.namelist():
if n not in z1.namelist():
z1.writestr(n, zf.open(n).read())
# Create a new object
st.session_state["gs_obj"] = GlobalStatistics(zip_project=z1, remote=True)
if option == "Global project statistics":
# User input controllers
mode = sidebar.radio("Choose mode to retrieve curated data: ", (
"Local directory", "INCEpTION API Host remote"
))
data = None
if mode == "Local directory":
project = sidebar.file_uploader("Folder that contains curated annotations in XMI 1.1 (.zip format only): ",
type="zip")
data = project
if mode == "INCEpTION API Host remote":
username = sidebar.text_input("Username: ")
password = sidebar.text_input("Password: ", type="password")
data = (username, password)
# Validate inputs
btn_process = sidebar.button('Process', key='process')
# Access data with local ressources
if btn_process and mode == "Local directory":
if data is not None:
# create a new session
init_session_statistics(remote=False, local=True, data=data)
# Access data with remote ressources
if btn_process and mode == "API Host remote":
if data is not None:
if check_login(username=data[0], password=data[1]):
# create a new session
init_session_statistics(remote=True, local=False, data=data)
else:
st.error("Sorry! Username or Password is empty.")
# Change data values and visualize new plot
if "gs_obj" in st.session_state:
if st.session_state["gs_local"] or st.session_state["gs_remote"]:
display_data()
|