File size: 2,365 Bytes
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding:utf-8 -*-

import numpy as np

def fleiss_kappa_function(M):
    """Computes Fleiss' kappa for group of annotators.
    :param M: a matrix of shape (:attr:'N', :attr:'k') with 'N' = number of subjects and 'k' = the number of categories.
        'M[i, j]' represent the number of raters who assigned the 'i'th subject to the 'j'th category.
    :type: numpy matrix
    :rtype: float
    :return: Fleiss' kappa score
    """
    N, k = M.shape  # N is # of items, k is # of categories
    n_annotators = float(np.sum(M[0, :]))  # # of annotators
    tot_annotations = N * n_annotators  # the total # of annotations
    category_sum = np.sum(M, axis=0)  # the sum of each category over all items

    # chance agreement
    p = category_sum / tot_annotations  # the distribution of each category over all annotations
    PbarE = np.sum(p * p)  # average chance agreement over all categories

    # observed agreement
    P = (np.sum(M * M, axis=1) - n_annotators) / (n_annotators * (n_annotators - 1))
    Pbar = np.sum(P) / N  # add all observed agreement chances per item and divide by amount of items

    return round((Pbar - PbarE) / (1 - PbarE), 4)

def cohen_kappa_function(ann1, ann2):
    """Computes Cohen kappa for pair-wise annotators.
    :param ann1: annotations provided by first annotator
    :type ann1: list
    :param ann2: annotations provided by second annotator
    :type ann2: list
    :rtype: float
    :return: Cohen kappa statistic
    """
    count = 0
    for an1, an2 in zip(ann1, ann2):
        if an1 == an2:
            count += 1
    A = count / len(ann1)  # observed agreement A (Po)

    uniq = set(ann1 + ann2)
    E = 0  # expected agreement E (Pe)
    for item in uniq:
        cnt1 = ann1.count(item)
        cnt2 = ann2.count(item)
        count = (cnt1 / len(ann1)) * (cnt2 / len(ann2))
        E += count

    return round((A - E) / (1 - E), 4)

def interpret_kappa(score):
    color = ""
    if score < 0:
        color= "#e74c3c;"
    elif 0.01 <= score <= 0.20:
        color= "#f39c12;"
    elif 0.21 <= score <= 0.40:
        color= "#f4d03f;"
    elif 0.41 <= score <= 0.60:
        color= "#5dade2;"
    elif 0.61 <= score <= 0.80:
        color= "#58d68d;"
    elif 0.81 <= score <= 0.99:
        color= "#28b463;"

    return f"<span style='font-size:30px; color: {color}'>{round(score*100, 2)} %</span>"