killian31
initial commit
8b09391
raw
history blame
9.06 kB
import argparse
import os
import time
import cv2
import numpy as np
import requests
import torch
import wget
import yolov7
from mobile_sam import SamPredictor, sam_model_registry
from PIL import Image
from tqdm import tqdm
from transformers import YolosForObjectDetection, YolosImageProcessor
from images_to_video import VideoCreator
from video_to_images import ImageCreator
def download_mobile_sam_weight(path):
if not os.path.exists(path):
sam_weights = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt"
for i in range(2, len(path.split("/"))):
temp = path.split("/")[:i]
cur_path = "/".join(temp)
if not os.path.isdir(cur_path):
os.mkdir(cur_path)
model_name = path.split("/")[-1]
if model_name in sam_weights:
wget.download(sam_weights, path)
else:
raise NameError(
"There is no pretrained weight to download for %s, you need to provide a path to segformer weights."
% model_name
)
def get_closest_bbox(bbox_list, bbox_target):
"""
Given a list of bounding boxes, find the one that is closest to the target bounding box.
Args:
bbox_list: list of bounding boxes
bbox_target: target bounding box
Returns:
closest bounding box
"""
min_dist = 100000000
min_idx = 0
for idx, bbox in enumerate(bbox_list):
dist = np.linalg.norm(bbox - bbox_target)
if dist < min_dist:
min_dist = dist
min_idx = idx
return bbox_list[min_idx]
def get_bboxes(image_file, image, model, image_processor, threshold=0.9):
if image_processor is None:
results = model(image_file)
predictions = results.pred[0]
boxes = predictions[:, :4].detach().numpy()
return boxes
else:
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(
outputs, threshold=threshold, target_sizes=target_sizes
)[0]
return results["boxes"].detach().numpy()
def segment_video(
video_filename,
dir_frames,
image_start,
image_end,
bbox_file,
skip_vid2im,
mobile_sam_weights,
auto_detect=False,
tracker_name="yolov7",
background_color="#009000",
output_dir="output_frames",
output_video="output.mp4",
pbar=False,
reverse_mask=False,
):
if not skip_vid2im:
vid_to_im = ImageCreator(
video_filename,
dir_frames,
image_start=image_start,
image_end=image_end,
pbar=pbar,
)
vid_to_im.get_images()
# Get fps of video
vid = cv2.VideoCapture(video_filename)
fps = vid.get(cv2.CAP_PROP_FPS)
vid.release()
background_color = background_color.lstrip("#")
background_color = (
np.array([int(background_color[i : i + 2], 16) for i in (0, 2, 4)]) / 255.0
)
with open(bbox_file, "r") as f:
bbox_orig = [int(coord) for coord in f.read().split(" ")]
download_mobile_sam_weight(mobile_sam_weights)
if image_end == 0:
frames = sorted(os.listdir(dir_frames))[image_start:]
else:
frames = sorted(os.listdir(dir_frames))[image_start:image_end]
model_type = "vit_t"
if torch.backends.mps.is_available():
device = "mps"
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
sam = sam_model_registry[model_type](checkpoint=mobile_sam_weights)
sam.to(device=device)
sam.eval()
predictor = SamPredictor(sam)
if not auto_detect:
if tracker_name == "yolov7":
model = yolov7.load("kadirnar/yolov7-tiny-v0.1", hf_model=True)
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.classes = None
image_processor = None
else:
model = YolosForObjectDetection.from_pretrained("hustvl/yolos-tiny")
image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")
output_frames = []
if pbar:
pb = tqdm(frames)
else:
pb = frames
processed_frames = 0
init_time = time.time()
for frame in pb:
processed_frames += 1
image_file = dir_frames + "/" + frame
image_pil = Image.open(image_file)
image_np = np.array(image_pil)
if not auto_detect:
bboxes = get_bboxes(image_file, image_pil, model, image_processor)
closest_bbox = get_closest_bbox(bboxes, bbox_orig)
input_box = np.array(closest_bbox)
else:
input_box = np.array([0, 0, image_np.shape[1], image_np.shape[0]])
predictor.set_image(image_np)
masks, _, _ = predictor.predict(
point_coords=None,
point_labels=None,
box=input_box[None, :],
multimask_output=True,
)
if reverse_mask:
mask = masks[0]
h, w = mask.shape[-2:]
mask_image = (
(mask).reshape(h, w, 1) * background_color.reshape(1, 1, -1)
) * 255
masked_image = image_np * (1 - mask).reshape(h, w, 1)
masked_image = masked_image + mask_image
output_frames.append(masked_image)
else:
mask = masks[0]
h, w = mask.shape[-2:]
mask_image = (
(1 - mask).reshape(h, w, 1) * background_color.reshape(1, 1, -1)
) * 255
masked_image = image_np * mask.reshape(h, w, 1)
masked_image = masked_image + mask_image
output_frames.append(masked_image)
if not pbar and processed_frames % 10 == 0:
remaining_time = (
(time.time() - init_time)
/ processed_frames
* (len(frames) - processed_frames)
)
remaining_time = int(remaining_time)
remaining_time_str = f"{remaining_time//60}m {remaining_time%60}s"
print(
f"Processed frame {processed_frames}/{len(frames)} - Remaining time: {remaining_time_str}"
)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
zfill_max = len(str(len(output_frames)))
for idx, frame in enumerate(output_frames):
cv2.imwrite(
f"{output_dir}/frame_{str(idx).zfill(zfill_max)}.png",
frame,
)
vid_creator = VideoCreator(output_dir, output_video, pbar=pbar)
vid_creator.create_video(fps=int(fps))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--video_filename",
default="assets/example.mp4",
type=str,
help="path to the video",
)
parser.add_argument(
"--dir_frames",
type=str,
default="frames",
help="path to the directory in which all input frames will be stored",
)
parser.add_argument(
"--image_start", type=int, default=0, help="first image to be stored"
)
parser.add_argument(
"--image_end",
type=int,
default=0,
help="last image to be stored, last one if 0",
)
parser.add_argument(
"--bbox_file",
type=str,
default="bbox.txt",
help="path to the bounding box text file",
)
parser.add_argument(
"--skip_vid2im",
action="store_true",
help="whether to write the video frames as images",
)
parser.add_argument(
"--mobile_sam_weights",
type=str,
default="./models/mobile_sam.pt",
help="path to MobileSAM weights",
)
parser.add_argument(
"--tracker_name",
type=str,
default="yolov7",
help="tracker name",
choices=["yolov7", "yoloS"],
)
parser.add_argument(
"--output_dir",
type=str,
default="output_frames",
help="directory to store the output frames",
)
parser.add_argument(
"--output_video",
type=str,
default="output.mp4",
help="path to store the output video",
)
parser.add_argument(
"--auto_detect",
action="store_true",
help="whether to use a bounding box to force the model to segment the object",
)
parser.add_argument(
"--background_color",
type=str,
default="#009000",
help="background color for the output (hex)",
)
args = parser.parse_args()
segment_video(
args.video_filename,
args.dir_frames,
args.image_start,
args.image_end,
args.bbox_file,
args.skip_vid2im,
args.mobile_sam_weights,
args.auto_detect,
args.output_dir,
args.output_video,
args.tracker_name,
args.background_color,
)