Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import pymssql
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
import pytesseract
|
7 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
8 |
+
from qwen_vl_utils import process_vision_info
|
9 |
+
|
10 |
+
# Initialize Flask app
|
11 |
+
app = Flask(__name__)
|
12 |
+
|
13 |
+
# Initialize model and processor
|
14 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ", torch_dtype="auto")
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
model.to("cuda")
|
17 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ")
|
18 |
+
|
19 |
+
pytesseract.pytesseract_cmd = r'/usr/bin/tesseract'
|
20 |
+
|
21 |
+
# Function to preprocess the image for OCR
|
22 |
+
def preprocess_image(image_path):
|
23 |
+
image = cv2.imread(image_path)
|
24 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
25 |
+
_, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
26 |
+
return binary
|
27 |
+
|
28 |
+
# Function to extract text using OCR
|
29 |
+
def ocr_extract_text(image_path):
|
30 |
+
preprocessed_image = preprocess_image(image_path)
|
31 |
+
return pytesseract.image_to_string(preprocessed_image)
|
32 |
+
|
33 |
+
# Function to process image and extract details
|
34 |
+
def process_image(image_path):
|
35 |
+
try:
|
36 |
+
messages = [{
|
37 |
+
"role": "user",
|
38 |
+
"content": [
|
39 |
+
{"type": "image", "image": image_path},
|
40 |
+
{"type": "text", "text": (
|
41 |
+
"Extract the following details from the invoice:\n"
|
42 |
+
"- 'invoice_number'\n"
|
43 |
+
"- 'date'\n"
|
44 |
+
"- 'place'\n"
|
45 |
+
"- 'amount' (monetary value in the relevant currency)\n"
|
46 |
+
"- 'category' (based on the invoice type)"
|
47 |
+
)}
|
48 |
+
]
|
49 |
+
}]
|
50 |
+
|
51 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
52 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
53 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
54 |
+
inputs = inputs.to(model.device)
|
55 |
+
|
56 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
57 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
58 |
+
|
59 |
+
return parse_details(output_text[0])
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Model failed, falling back to OCR: {e}")
|
63 |
+
ocr_text = ocr_extract_text(image_path)
|
64 |
+
return parse_details(ocr_text)
|
65 |
+
|
66 |
+
# Function to parse details from text
|
67 |
+
def parse_details(details):
|
68 |
+
parsed_data = {
|
69 |
+
"Invoice Number": None,
|
70 |
+
"Date": None,
|
71 |
+
"Place": None,
|
72 |
+
"Amount": None,
|
73 |
+
"Category": None
|
74 |
+
}
|
75 |
+
|
76 |
+
lines = details.split("\n")
|
77 |
+
for line in lines:
|
78 |
+
lower_line = line.lower()
|
79 |
+
if "invoice" in lower_line:
|
80 |
+
parsed_data["Invoice Number"] = line.split(":")[-1].strip()
|
81 |
+
elif "date" in lower_line:
|
82 |
+
parsed_data["Date"] = line.split(":")[-1].strip()
|
83 |
+
elif "place" in lower_line:
|
84 |
+
parsed_data["Place"] = line.split(":")[-1].strip()
|
85 |
+
elif any(keyword in lower_line for keyword in ["total", "amount", "cost"]):
|
86 |
+
parsed_data["Amount"] = line.split(":")[-1].strip()
|
87 |
+
else:
|
88 |
+
parsed_data["Category"] = "General"
|
89 |
+
|
90 |
+
return parsed_data
|
91 |
+
|
92 |
+
# Function to store DataFrame to Azure SQL Database
|
93 |
+
def store_to_azure_sql(dataframe):
|
94 |
+
conn_str = (
|
95 |
+
"Driver={ODBC Driver 17 for SQL Server};"
|
96 |
+
"Server=35.227.148.156;" # Hardcoded IP address
|
97 |
+
"Database=dbo.Invoices;"
|
98 |
+
"UID=pio-admin;"
|
99 |
+
"PWD=Poctest123#;"
|
100 |
+
)
|
101 |
+
try:
|
102 |
+
with pymssql.connect(conn_str) as conn:
|
103 |
+
cursor = conn.cursor()
|
104 |
+
create_table_query = """
|
105 |
+
IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='Invoices' AND xtype='U')
|
106 |
+
CREATE TABLE Invoices (
|
107 |
+
InvoiceNumber NVARCHAR(255),
|
108 |
+
Date NVARCHAR(255),
|
109 |
+
Place NVARCHAR(255),
|
110 |
+
Amount NVARCHAR(255),
|
111 |
+
Category NVARCHAR(255)
|
112 |
+
)
|
113 |
+
"""
|
114 |
+
cursor.execute(create_table_query)
|
115 |
+
|
116 |
+
for _, row in dataframe.iterrows():
|
117 |
+
insert_query = """
|
118 |
+
INSERT INTO Invoices (InvoiceNumber, Date, Place, Amount, Category)
|
119 |
+
VALUES (%s, %s, %s, %s, %s)
|
120 |
+
"""
|
121 |
+
cursor.execute(insert_query, row['Invoice Number'], row['Date'], row['Place'], row['Amount'], row['Category'])
|
122 |
+
conn.commit()
|
123 |
+
print("Data successfully stored in Azure SQL Database.")
|
124 |
+
except Exception as e:
|
125 |
+
print(f"Error storing data to database: {e}")
|
126 |
+
|
127 |
+
@app.route('/process_invoice', methods=['POST'])
|
128 |
+
def process_invoice():
|
129 |
+
try:
|
130 |
+
# Get the image file from the request
|
131 |
+
image_file = request.files['file']
|
132 |
+
image_path = "temp_image.jpg"
|
133 |
+
image_file.save(image_path)
|
134 |
+
|
135 |
+
# Process the image
|
136 |
+
details = process_image(image_path)
|
137 |
+
|
138 |
+
# Convert details to a DataFrame
|
139 |
+
df = pd.DataFrame([details])
|
140 |
+
|
141 |
+
# Store in Azure SQL
|
142 |
+
store_to_azure_sql(df)
|
143 |
+
|
144 |
+
# Return the extracted details and status
|
145 |
+
return jsonify({"extracted_details": details, "status": "Data stored successfully"})
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
return jsonify({"error": str(e)}), 500
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
app.run(host="0.0.0.0", port=5000)
|