Spaces:
Runtime error
Runtime error
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import spaces | |
from comfy import model_management | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models") | |
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision") | |
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1") | |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders") | |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5") | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
"""Returns the value at the given index of a sequence or mapping. | |
If the object is a sequence (like list or string), returns the value at the given index. | |
If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
Some return a dictionary, in these cases, we look for the "results" key | |
Args: | |
obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
index (int): The index of the value to retrieve. | |
Returns: | |
Any: The value at the given index. | |
Raises: | |
IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
""" | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def find_path(name: str, path: str = None) -> str: | |
""" | |
Recursively looks at parent folders starting from the given path until it finds the given name. | |
Returns the path as a Path object if found, or None otherwise. | |
""" | |
# If no path is given, use the current working directory | |
if path is None: | |
path = os.getcwd() | |
# Check if the current directory contains the name | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
# Get the parent directory | |
parent_directory = os.path.dirname(path) | |
# If the parent directory is the same as the current directory, we've reached the root and stop the search | |
if parent_directory == path: | |
return None | |
# Recursively call the function with the parent directory | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
""" | |
Add 'ComfyUI' to the sys.path | |
""" | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
""" | |
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
""" | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
print( | |
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
) | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
This function sets up a new asyncio event loop, initializes the PromptServer, | |
creates a PromptQueue, and initializes the custom nodes. | |
""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
# Creating a new event loop and setting it as the default loop | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
# Creating an instance of PromptServer with the loop | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
# Initializing custom nodes | |
init_extra_nodes() | |
from nodes import NODE_CLASS_MAPPINGS | |
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
#To be added to `model_loaders` as it loads a model | |
dualcliploader_357 = dualcliploader.load_clip( | |
clip_name1="t5/t5xxl_fp16.safetensors", | |
clip_name2="clip_l.safetensors", | |
type="flux", | |
) | |
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
#To be added to `model_loaders` as it loads a model | |
vaeloader_359 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") | |
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]() | |
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() | |
#To be added to `model_loaders` as it loads a model | |
unetloader_358 = unetloader.load_unet( | |
unet_name="flux1-depth-dev.safetensors", weight_dtype="default" | |
) | |
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() | |
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[ | |
"DownloadAndLoadDepthAnythingV2Model" | |
]() | |
#To be added to `model_loaders` as it loads a model | |
downloadandloaddepthanythingv2model_437 = ( | |
downloadandloaddepthanythingv2model.loadmodel( | |
model="depth_anything_v2_vitl_fp32.safetensors" | |
) | |
) | |
instructpixtopixconditioning = NODE_CLASS_MAPPINGS[ | |
"InstructPixToPixConditioning" | |
]() | |
text_multiline_454 = text_multiline.text_multiline(text="FLUX_Redux") | |
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() | |
#To be added to `model_loaders` as it loads a model | |
clipvisionloader_438 = clipvisionloader.load_clip( | |
clip_name="sigclip_vision_patch14_384.safetensors" | |
) | |
clipvisionencode = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]() | |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
#To be added to `model_loaders` as it loads a model | |
stylemodelloader_441 = stylemodelloader.load_style_model( | |
style_model_name="flux1-redux-dev.safetensors" | |
) | |
text_multiline = NODE_CLASS_MAPPINGS["Text Multiline"]() | |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[ | |
"CR Conditioning Input Switch" | |
]() | |
cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]() | |
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() | |
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]() | |
#Add all the models that load a safetensors file | |
model_loaders = [dualcliploader_357, vaeloader_359, unetloader_358, clipvisionloader_438, stylemodelloader_441, downloadandloaddepthanythingv2model_437] | |
# Check which models are valid and how to best load them | |
valid_models = [ | |
getattr(loader[0], 'patcher', loader[0]) | |
for loader in model_loaders | |
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) | |
] | |
#Finally loads the models | |
model_management.load_models_gpu(valid_models) | |
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength): | |
import_custom_nodes() | |
with torch.inference_mode(): | |
intconstant_83 = intconstant.get_value(value=1024) | |
intconstant_84 = intconstant.get_value(value=1024) | |
cr_clip_input_switch_319 = cr_clip_input_switch.switch( | |
Input=1, | |
clip1=get_value_at_index(dualcliploader_357, 0), | |
clip2=get_value_at_index(dualcliploader_357, 0), | |
) | |
cliptextencode_174 = cliptextencode.encode( | |
text=prompt, | |
clip=get_value_at_index(cr_clip_input_switch_319, 0), | |
) | |
cliptextencode_175 = cliptextencode.encode( | |
text="purple", clip=get_value_at_index(cr_clip_input_switch_319, 0) | |
) | |
loadimage_429 = loadimage.load_image(image=structure_image) | |
imageresize_72 = imageresize.execute( | |
width=get_value_at_index(intconstant_83, 0), | |
height=get_value_at_index(intconstant_84, 0), | |
interpolation="bicubic", | |
method="keep proportion", | |
condition="always", | |
multiple_of=16, | |
image=get_value_at_index(loadimage_429, 0), | |
) | |
getimagesizeandcount_360 = getimagesizeandcount.getsize( | |
image=get_value_at_index(imageresize_72, 0) | |
) | |
vaeencode_197 = vaeencode.encode( | |
pixels=get_value_at_index(getimagesizeandcount_360, 0), | |
vae=get_value_at_index(vaeloader_359, 0), | |
) | |
ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler") | |
randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) | |
fluxguidance_430 = fluxguidance.append( | |
guidance=15, conditioning=get_value_at_index(cliptextencode_174, 0) | |
) | |
depthanything_v2_436 = depthanything_v2.process( | |
da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0), | |
images=get_value_at_index(getimagesizeandcount_360, 0), | |
) | |
instructpixtopixconditioning_431 = instructpixtopixconditioning.encode( | |
positive=get_value_at_index(fluxguidance_430, 0), | |
negative=get_value_at_index(cliptextencode_175, 0), | |
vae=get_value_at_index(vaeloader_359, 0), | |
pixels=get_value_at_index(depthanything_v2_436, 0), | |
) | |
loadimage_440 = loadimage.load_image(image=style_image) | |
clipvisionencode_439 = clipvisionencode.encode( | |
crop="center", | |
clip_vision=get_value_at_index(clipvisionloader_438, 0), | |
image=get_value_at_index(loadimage_440, 0), | |
) | |
emptylatentimage_10 = emptylatentimage.generate( | |
width=get_value_at_index(imageresize_72, 1), | |
height=get_value_at_index(imageresize_72, 2), | |
batch_size=1, | |
) | |
cr_conditioning_input_switch_271 = cr_conditioning_input_switch.switch( | |
Input=1, | |
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 0), | |
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0), | |
) | |
cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch( | |
Input=1, | |
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1), | |
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1), | |
) | |
cr_model_input_switch_320 = cr_model_input_switch.switch( | |
Input=1, | |
model1=get_value_at_index(unetloader_358, 0), | |
model2=get_value_at_index(unetloader_358, 0), | |
) | |
stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel( | |
strength=style_strength, | |
conditioning=get_value_at_index(instructpixtopixconditioning_431, 0), | |
style_model=get_value_at_index(stylemodelloader_441, 0), | |
clip_vision_output=get_value_at_index(clipvisionencode_439, 0), | |
) | |
basicguider_366 = basicguider.get_guider( | |
model=get_value_at_index(cr_model_input_switch_320, 0), | |
conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0), | |
) | |
basicscheduler_364 = basicscheduler.get_sigmas( | |
scheduler="simple", | |
steps=28, | |
denoise=1, | |
model=get_value_at_index(cr_model_input_switch_320, 0), | |
) | |
samplercustomadvanced_362 = samplercustomadvanced.sample( | |
noise=get_value_at_index(randomnoise_365, 0), | |
guider=get_value_at_index(basicguider_366, 0), | |
sampler=get_value_at_index(ksamplerselect_363, 0), | |
sigmas=get_value_at_index(basicscheduler_364, 0), | |
latent_image=get_value_at_index(emptylatentimage_10, 0), | |
) | |
vaedecode_321 = vaedecode.decode( | |
samples=get_value_at_index(samplercustomadvanced_362, 0), | |
vae=get_value_at_index(vaeloader_359, 0), | |
) | |
saveimage_327 = saveimage.save_images( | |
filename_prefix=get_value_at_index(text_multiline_454, 0), | |
images=get_value_at_index(vaedecode_321, 0), | |
) | |
fluxguidance_382 = fluxguidance.append( | |
guidance=depth_strength, | |
conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0), | |
) | |
imagecrop_447 = imagecrop.execute( | |
width=2000, | |
height=2000, | |
position="top-center", | |
x_offset=0, | |
y_offset=0, | |
image=get_value_at_index(loadimage_440, 0), | |
) | |
saved_path = f"output/{saveimage_327['ui']['images'][0]['filename']}" | |
return saved_path | |
if __name__ == "__main__": | |
# Comment out the main() call | |
# Start your Gradio app | |
with gr.Blocks() as app: | |
# Add a title | |
gr.Markdown("# FLUX Style Shaping") | |
with gr.Row(): | |
with gr.Column(): | |
# Add an input | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
# Add a `Row` to include the groups side by side | |
with gr.Row(): | |
# First group includes structure image and depth strength | |
with gr.Group(): | |
structure_image = gr.Image(label="Structure Image", type="filepath") | |
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength") | |
# Second group includes style image and style strength | |
with gr.Group(): | |
style_image = gr.Image(label="Style Image", type="filepath") | |
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength") | |
# The generate button | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
# The output image | |
output_image = gr.Image(label="Generated Image") | |
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs | |
# and the output an image | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength], | |
outputs=[output_image] | |
) | |
app.launch(share=True) |