import gradio as gr import torch from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator from torchtext.datasets import Multi30k from torch import Tensor from typing import Iterable, List # Define your model, tokenizer, and other necessary components here # Ensure you have imported all necessary libraries # Load your transformer model model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.load_state_dict(torch.load('./transformer_model.pth', map_location=device)) model.eval() def translate(model: torch.nn.Module, src_sentence: str): model.eval() src = text_transform[SRC_LANGUAGE](src_sentence).view(-1, 1) num_tokens = src.shape[0] src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool) tgt_tokens = greedy_decode( model, src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten() return " ".join(vocab_transform[TGT_LANGUAGE].lookup_tokens(list(tgt_tokens.cpu().numpy()))).replace("", "").replace("", "") if __name__ == "__main__": # Create the Gradio interface iface = gr.Interface( fn=translate, # Specify the translation function as the main function inputs=[ gr.inputs.Textbox(label="Text") ], outputs=["text"], # Define the output type as text cache_examples=False, # Disable caching of examples title="germanToenglish", # Set the title of the interface ) # Launch the interface iface.launch(share=True)