Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """germanToEnglish.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1UI02YcWdG9ErJd18evuYmF1vNiqz7geo | |
| """ | |
| from torchtext.data.utils import get_tokenizer | |
| from torchtext.vocab import build_vocab_from_iterator | |
| from torchtext.datasets import multi30k, Multi30k | |
| from typing import Iterable, List | |
| multi30k.URL["train"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz" | |
| multi30k.URL["valid"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz" | |
| SRC_LANGUAGE = 'de' | |
| TGT_LANGUAGE = 'en' | |
| # Place-holders | |
| token_transform = {} | |
| vocab_transform = {} | |
| #from google.colab import drive | |
| #drive.mount('/gdrive') | |
| #!pip install -U torchdata | |
| #!pip install -U spacy | |
| #!python -m spacy download en_core_web_sm | |
| #!python -m spacy download de_core_news_sm | |
| #!pip install portalocker>=2.0.0 | |
| token_transform[SRC_LANGUAGE] = get_tokenizer('spacy', language='de_core_news_sm') | |
| token_transform[TGT_LANGUAGE] = get_tokenizer('spacy', language='en_core_web_sm') | |
| # helper function to yield list of tokens | |
| def yield_tokens(data_iter: Iterable, language: str) -> List[str]: | |
| language_index = {SRC_LANGUAGE: 0, TGT_LANGUAGE: 1} | |
| for data_sample in data_iter: | |
| yield token_transform[language](data_sample[language_index[language]]) | |
| # Define special symbols and indices | |
| UNK_IDX, PAD_IDX, BOS_IDX, EOS_IDX = 0, 1, 2, 3 | |
| # Make sure the tokens are in order of their indices to properly insert them in vocab | |
| special_symbols = ['<unk>', '<pad>', '<bos>', '<eos>'] | |
| for ln in [SRC_LANGUAGE, TGT_LANGUAGE]: | |
| # Training data Iterator | |
| train_iter = Multi30k(split='train', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE)) | |
| vocab_transform[ln] = build_vocab_from_iterator(yield_tokens(train_iter, ln), | |
| min_freq=1, | |
| specials=special_symbols, | |
| special_first=True) | |
| for ln in [SRC_LANGUAGE, TGT_LANGUAGE]: | |
| vocab_transform[ln].set_default_index(UNK_IDX) | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import Transformer | |
| import math | |
| DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| class PositionalEncoding(nn.Module): | |
| def __init__(self, | |
| emb_size: int, | |
| dropout: float, | |
| maxlen: int = 5000): | |
| super(PositionalEncoding, self).__init__() | |
| den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size) | |
| pos = torch.arange(0, maxlen).reshape(maxlen, 1) | |
| pos_embedding = torch.zeros((maxlen, emb_size)) | |
| pos_embedding[:, 0::2] = torch.sin(pos * den) | |
| pos_embedding[:, 1::2] = torch.cos(pos * den) | |
| pos_embedding = pos_embedding.unsqueeze(-2) | |
| self.dropout = nn.Dropout(dropout) | |
| self.register_buffer('pos_embedding', pos_embedding) | |
| def forward(self, token_embedding: Tensor): | |
| return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :]) | |
| class TokenEmbedding(nn.Module): | |
| def __init__(self, vocab_size: int, emb_size): | |
| super(TokenEmbedding, self).__init__() | |
| self.embedding = nn.Embedding(vocab_size, emb_size) | |
| self.emb_size = emb_size | |
| def forward(self, tokens: Tensor): | |
| return self.embedding(tokens.long()) * math.sqrt(self.emb_size) | |
| # Seq2Seq Network | |
| class Seq2SeqTransformer(nn.Module): | |
| def __init__(self, | |
| num_encoder_layers: int, | |
| num_decoder_layers: int, | |
| emb_size: int, | |
| nhead: int, | |
| src_vocab_size: int, | |
| tgt_vocab_size: int, | |
| dim_feedforward: int = 512, | |
| dropout: float = 0.1): | |
| super(Seq2SeqTransformer, self).__init__() | |
| self.transformer = Transformer(d_model=emb_size, | |
| nhead=nhead, | |
| num_encoder_layers=num_encoder_layers, | |
| num_decoder_layers=num_decoder_layers, | |
| dim_feedforward=dim_feedforward, | |
| dropout=dropout) | |
| self.generator = nn.Linear(emb_size, tgt_vocab_size) | |
| self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size) | |
| self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size) | |
| self.positional_encoding = PositionalEncoding( | |
| emb_size, dropout=dropout) | |
| def forward(self, | |
| src: Tensor, | |
| trg: Tensor, | |
| src_mask: Tensor, | |
| tgt_mask: Tensor, | |
| src_padding_mask: Tensor, | |
| tgt_padding_mask: Tensor, | |
| memory_key_padding_mask: Tensor): | |
| src_emb = self.positional_encoding(self.src_tok_emb(src)) | |
| tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg)) | |
| outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, | |
| src_padding_mask, tgt_padding_mask, memory_key_padding_mask) | |
| return self.generator(outs) | |
| def encode(self, src: Tensor, src_mask: Tensor): | |
| return self.transformer.encoder(self.positional_encoding( | |
| self.src_tok_emb(src)), src_mask) | |
| def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor): | |
| return self.transformer.decoder(self.positional_encoding( | |
| self.tgt_tok_emb(tgt)), memory, | |
| tgt_mask) | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import Transformer | |
| import math | |
| DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| class PositionalEncoding(nn.Module): | |
| def __init__(self, | |
| emb_size: int, | |
| dropout: float, | |
| maxlen: int = 5000): | |
| super(PositionalEncoding, self).__init__() | |
| den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size) | |
| pos = torch.arange(0, maxlen).reshape(maxlen, 1) | |
| pos_embedding = torch.zeros((maxlen, emb_size)) | |
| pos_embedding[:, 0::2] = torch.sin(pos * den) | |
| pos_embedding[:, 1::2] = torch.cos(pos * den) | |
| pos_embedding = pos_embedding.unsqueeze(-2) | |
| self.dropout = nn.Dropout(dropout) | |
| self.register_buffer('pos_embedding', pos_embedding) | |
| def forward(self, token_embedding: Tensor): | |
| return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :]) | |
| class TokenEmbedding(nn.Module): | |
| def __init__(self, vocab_size: int, emb_size): | |
| super(TokenEmbedding, self).__init__() | |
| self.embedding = nn.Embedding(vocab_size, emb_size) | |
| self.emb_size = emb_size | |
| def forward(self, tokens: Tensor): | |
| return self.embedding(tokens.long()) * math.sqrt(self.emb_size) | |
| # Seq2Seq Network | |
| class Seq2SeqTransformer(nn.Module): | |
| def __init__(self, | |
| num_encoder_layers: int, | |
| num_decoder_layers: int, | |
| emb_size: int, | |
| nhead: int, | |
| src_vocab_size: int, | |
| tgt_vocab_size: int, | |
| dim_feedforward: int = 512, | |
| dropout: float = 0.1): | |
| super(Seq2SeqTransformer, self).__init__() | |
| self.transformer = Transformer(d_model=emb_size, | |
| nhead=nhead, | |
| num_encoder_layers=num_encoder_layers, | |
| num_decoder_layers=num_decoder_layers, | |
| dim_feedforward=dim_feedforward, | |
| dropout=dropout) | |
| self.generator = nn.Linear(emb_size, tgt_vocab_size) | |
| self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size) | |
| self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size) | |
| self.positional_encoding = PositionalEncoding( | |
| emb_size, dropout=dropout) | |
| def forward(self, | |
| src: Tensor, | |
| trg: Tensor, | |
| src_mask: Tensor, | |
| tgt_mask: Tensor, | |
| src_padding_mask: Tensor, | |
| tgt_padding_mask: Tensor, | |
| memory_key_padding_mask: Tensor): | |
| src_emb = self.positional_encoding(self.src_tok_emb(src)) | |
| tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg)) | |
| outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, | |
| src_padding_mask, tgt_padding_mask, memory_key_padding_mask) | |
| return self.generator(outs) | |
| def encode(self, src: Tensor, src_mask: Tensor): | |
| return self.transformer.encoder(self.positional_encoding( | |
| self.src_tok_emb(src)), src_mask) | |
| def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor): | |
| return self.transformer.decoder(self.positional_encoding( | |
| self.tgt_tok_emb(tgt)), memory, | |
| tgt_mask) | |
| def generate_square_subsequent_mask(sz): | |
| mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1) | |
| mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
| return mask | |
| def create_mask(src, tgt): | |
| src_seq_len = src.shape[0] | |
| tgt_seq_len = tgt.shape[0] | |
| tgt_mask = generate_square_subsequent_mask(tgt_seq_len) | |
| src_mask = torch.zeros((src_seq_len, src_seq_len),device=DEVICE).type(torch.bool) | |
| src_padding_mask = (src == PAD_IDX).transpose(0, 1) | |
| tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1) | |
| return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask | |
| torch.manual_seed(0) | |
| SRC_VOCAB_SIZE = len(vocab_transform[SRC_LANGUAGE]) | |
| TGT_VOCAB_SIZE = len(vocab_transform[TGT_LANGUAGE]) | |
| EMB_SIZE = 512 | |
| NHEAD = 8 | |
| FFN_HID_DIM = 512 | |
| BATCH_SIZE = 128 | |
| NUM_ENCODER_LAYERS = 3 | |
| NUM_DECODER_LAYERS = 3 | |
| transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, | |
| NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) | |
| for p in transformer.parameters(): | |
| if p.dim() > 1: | |
| nn.init.xavier_uniform_(p) | |
| transformer = transformer.to(DEVICE) | |
| loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX) | |
| optimizer = torch.optim.Adam(transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9) | |
| from torch.nn.utils.rnn import pad_sequence | |
| # helper function to club together sequential operations | |
| def sequential_transforms(*transforms): | |
| def func(txt_input): | |
| for transform in transforms: | |
| txt_input = transform(txt_input) | |
| return txt_input | |
| return func | |
| def tensor_transform(token_ids: List[int]): | |
| return torch.cat((torch.tensor([BOS_IDX]), | |
| torch.tensor(token_ids), | |
| torch.tensor([EOS_IDX]))) | |
| text_transform = {} | |
| for ln in [SRC_LANGUAGE, TGT_LANGUAGE]: | |
| text_transform[ln] = sequential_transforms(token_transform[ln], #Tokenization | |
| vocab_transform[ln], #Numericalization | |
| tensor_transform) # Add BOS/EOS and create tensor | |
| # function to collate data samples into batch tensors | |
| def collate_fn(batch): | |
| src_batch, tgt_batch = [], [] | |
| for src_sample, tgt_sample in batch: | |
| src_batch.append(text_transform[SRC_LANGUAGE](src_sample.rstrip("\n"))) | |
| tgt_batch.append(text_transform[TGT_LANGUAGE](tgt_sample.rstrip("\n"))) | |
| src_batch = pad_sequence(src_batch, padding_value=PAD_IDX) | |
| tgt_batch = pad_sequence(tgt_batch, padding_value=PAD_IDX) | |
| return src_batch, tgt_batch | |
| from torch.utils.data import DataLoader | |
| def train_epoch(model, optimizer): | |
| model.train() | |
| losses = 0 | |
| train_iter = Multi30k(split='train', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE)) | |
| train_dataloader = DataLoader(train_iter, batch_size=BATCH_SIZE, collate_fn=collate_fn) | |
| for src, tgt in train_dataloader: | |
| src = src.to(DEVICE) | |
| tgt = tgt.to(DEVICE) | |
| tgt_input = tgt[:-1, :] | |
| src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input) | |
| logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask) | |
| optimizer.zero_grad() | |
| tgt_out = tgt[1:, :] | |
| loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) | |
| loss.backward() | |
| optimizer.step() | |
| losses += loss.item() | |
| return losses / len(list(train_dataloader)) | |
| def evaluate(model): | |
| model.eval() | |
| losses = 0 | |
| val_iter = Multi30k(split='valid', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE)) | |
| val_dataloader = DataLoader(val_iter, batch_size=BATCH_SIZE, collate_fn=collate_fn) | |
| for src, tgt in val_dataloader: | |
| src = src.to(DEVICE) | |
| tgt = tgt.to(DEVICE) | |
| tgt_input = tgt[:-1, :] | |
| src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input) | |
| logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask) | |
| tgt_out = tgt[1:, :] | |
| loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) | |
| losses += loss.item() | |
| return losses / len(list(val_dataloader)) | |
| from timeit import default_timer as timer | |
| NUM_EPOCHS = 10 | |
| for epoch in range(1, NUM_EPOCHS+1): | |
| start_time = timer() | |
| train_loss = train_epoch(transformer, optimizer) | |
| end_time = timer() | |
| val_loss = evaluate(transformer) | |
| print((f"Epoch: {epoch}, Train loss: {train_loss:.3f}, Val loss: {val_loss:.3f}, "f"Epoch time = {(end_time - start_time):.3f}s")) | |
| model =torch.save(transformer.state_dict(), './transformer_model.pth') | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, | |
| NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) | |
| model.load_state_dict(torch.load('./transformer_model.pth', map_location=device)) | |
| model.to(device) | |
| model.eval() | |
| def greedy_decode(model,src, src_mask, max_len, start_symbol): | |
| src = src.to(DEVICE) | |
| src_mask = src_mask.to(DEVICE) | |
| memory = model.encode(src, src_mask) | |
| ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE) | |
| for i in range(max_len-1): | |
| memory = memory.to(DEVICE) | |
| tgt_mask = (generate_square_subsequent_mask(ys.size(0)) | |
| .type(torch.bool)).to(DEVICE) | |
| out = model.decode(ys, memory, tgt_mask) | |
| out = out.transpose(0, 1) | |
| prob = model.generator(out[:, -1]) | |
| _, next_word = torch.max(prob, dim=1) | |
| next_word = next_word.item() | |
| ys = torch.cat([ys, | |
| torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0) | |
| if next_word == EOS_IDX: | |
| break | |
| return ys | |
| def translate(src_sentence: str): | |
| model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) | |
| model.load_state_dict(torch.load('./transformer_model.pth')) | |
| model.to(DEVICE) | |
| model.eval() | |
| src = text_transform[SRC_LANGUAGE](src_sentence).view(-1, 1) | |
| num_tokens = src.shape[0] | |
| src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool) | |
| tgt_tokens = greedy_decode( | |
| model, src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten() | |
| return " ".join(vocab_transform[TGT_LANGUAGE].lookup_tokens(list(tgt_tokens.cpu().numpy()))).replace("<bos>", "").replace("<eos>", "") |