Spaces:
Sleeping
Sleeping
| import nltk | |
| nltk.download('stopwords') | |
| nltk.download('punkt') | |
| import pandas as pd | |
| import classify_abs | |
| import extract_abs | |
| #pd.set_option('display.max_colwidth', None) | |
| import streamlit as st | |
| import spacy | |
| import tensorflow as tf | |
| import pickle | |
| ########## Title for the Web App ########## | |
| st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png" alt="National Center for Advancing Translational Sciences Logo" width=550>''',unsafe_allow_html=True) | |
| #st.markdown(" | |
| #st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/raw/main/NCATS_logo.svg" alt="National Center for Advancing Translational Sciences Logo" width="800" height="300">''',unsafe_allow_html=True) | |
| st.title("Epidemiology Extraction Pipeline for Rare Diseases") | |
| #st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)") | |
| #### CHANGE SIDEBAR WIDTH ### | |
| st.markdown( | |
| """ | |
| <style> | |
| [data-testid="stSidebar"][aria-expanded="true"] > div:first-child { | |
| width: 275px; | |
| } | |
| [data-testid="stSidebar"][aria-expanded="false"] > div:first-child { | |
| width: 275px; | |
| margin-left: -400px; | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| #max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering | |
| max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50) | |
| filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None')) | |
| extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False) | |
| def load_models_experimental(): | |
| classify_model_vars = classify_abs.init_classify_model() | |
| NER_pipeline, entity_classes = extract_abs.init_NER_pipeline() | |
| GARD_dict, max_length = extract_abs.load_GARD_diseases() | |
| return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length | |
| def load_models(): | |
| # load the tokenizer | |
| with open('tokenizer.pickle', 'rb') as handle: | |
| classify_tokenizer = pickle.load(handle) | |
| # load the model | |
| classify_model = tf.keras.models.load_model("LSTM_RNN_Model") | |
| #classify_model_vars = classify_abs.init_classify_model() | |
| NER_pipeline, entity_classes = extract_abs.init_NER_pipeline() | |
| GARD_dict, max_length = extract_abs.load_GARD_diseases() | |
| return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length | |
| def epi_sankey(sankey_data): | |
| gathered, relevant, epidemiologic = sankey_data | |
| fig = go.Figure(data=[go.Sankey( | |
| node = dict( | |
| pad = 15, | |
| thickness = 20, | |
| line = dict(color = "black", width = 0.5), | |
| label = ["PubMed IDs Gathered", "Irrelevant Abstracts","Relevant Abstracts Gathered","Epidemiologic Abstracts","Not Epidemiologic"], | |
| color = "blue" | |
| ), | |
| #label = ["A1", "A2", "B1", "B2", "C1", "C2"] | |
| link = dict( | |
| source = [0, 0, 2, 2], | |
| target = [2, 1, 3, 4], | |
| value = [relevant, gathered-relevant, epidemiologic, relevant-epidemiologic] | |
| ))]) | |
| return fig | |
| with st.spinner('Loading Epidemiology Models and Dependencies...'): | |
| classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental() | |
| #classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models() | |
| #Load spaCy models which cannot be cached due to hash function error | |
| #nlp = spacy.load('en_core_web_lg') | |
| #nlpSci = spacy.load("en_ner_bc5cdr_md") | |
| #nlpSci2 = spacy.load('en_ner_bionlp13cg_md') | |
| #classify_model_vars = (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer) | |
| loaded = st.success('All Models and Dependencies Loaded!') | |
| disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.") | |
| loaded.empty() | |
| st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**phenylketonuria**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [GARD:0009941](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a).") | |
| st.markdown("A full list of rare diseases tracked by GARD can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).") | |
| if disease_or_gard_id: | |
| df, sankey_data = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering, | |
| NER_pipeline, entity_classes, | |
| extract_diseases,GARD_dict, max_length, | |
| classify_model_vars) | |
| st.dataframe(df, height=100) | |
| st.download_button( | |
| label="Download epidemiology results for "+disease_or_gard_id+" as CSV", | |
| data=df.to_csv().encode('utf-8'), | |
| file_name=disease_or_gard_id+'.csv', | |
| mime='text/csv', | |
| ) | |
| #st.dataframe(data=None, width=None, height=None) | |
| gathered, relevant, epidemiologic = sankey_data | |
| if st.button('Display Sankey Diagram'): | |
| fig = epi_sankey(sankey_data) | |
| st.plotly_chart(fig, use_container_width=True) | |
| # st.code(body, language="python") |