Spaces:
Paused
Paused
File size: 5,311 Bytes
d18942e 61ced1b d18942e 94f448e d18942e 94f448e d18942e 94f448e d18942e 61ced1b 94f448e 61ced1b d18942e 61ced1b d18942e 94f448e 64dacd5 94f448e d18942e 61ced1b d18942e 238ce74 d18942e 65e6974 d18942e 7e63566 d9d11cd 7e63566 d18942e d9d11cd a52f49c d18942e a52f49c d18942e a52f49c d18942e 65e6974 d18942e a52f49c 65e6974 61ced1b d9d11cd 65e6974 d18942e 94f448e d9d11cd 94f448e d9d11cd 94f448e d18942e 61ced1b d18942e 94f448e d18942e 61ced1b 94f448e d18942e 94f448e d9d11cd 94f448e d9d11cd d18942e 61ced1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
MODEL_LIST = ["nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID", "nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat")
TITLE = "<h1 style='color: #B71C1C; text-align: center;'>Donald Trump Chatbot</h1>"
TRUMP_AVATAR = "https://upload.wikimedia.org/wikipedia/commons/5/56/Donald_Trump_official_portrait.jpg"
CSS = """
.chatbot {
background-color: white;
}
.duplicate-button {
margin: auto !important;
color: white !important;
background: #B71C1C !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
color: #B71C1C;
}
.contain {object-fit: contain}
.avatar {width: 80px; height: 80px; border-radius: 50%; object-fit: cover;}
.user-message {
background-color: white !important;
color: black !important;
}
.bot-message {
background-color: #B71C1C !important;
color: white !important;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
):
system_prompt = """You are a Donald Trump chatbot participating in a debate. Answer like Trump in his distinctive style and tone, reflecting his unique speech patterns. In every response:
1. Use strong superlatives like 'tremendous,' 'fantastic,' and 'the best.'
2. Attack opponents where appropriate (e.g., 'fake news media,' 'radical left').
3. Focus on personal successes (e.g. 'nobody's done more than I have').
4. Keep sentences short and impactful.
5. Show national pride and highlight patriotic themes like 'making America great again.'
6. Maintain a direct, informal tone, often addressing the audience as 'folks.'
Importantly, always respond to and rebut the previous speaker's points in Trump's style. Keep responses concise and avoid unnecessary repetition."""
temperature = 0.1
max_new_tokens = 256
top_p = 0.9
top_k = 20
repetition_penalty = 1.5
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(input_ids)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
user_message = history[-1][0]
bot_response = stream_chat(user_message, history[:-1])
history[-1][1] = ""
for character in bot_response:
history[-1][1] += character
yield history
with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo:
gr.HTML(TITLE)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=(None, TRUMP_AVATAR),
height=600,
bubble_full_width=False,
show_label=False,
)
msg = gr.Textbox(
placeholder="Ask Donald Trump a question",
container=False,
scale=7
)
with gr.Row():
submit = gr.Button("Submit", scale=1, variant="primary")
clear = gr.Button("Clear", scale=1)
gr.Examples(
examples=[
["What's your stance on immigration?"],
["How would you describe your economic policies?"],
["What are your thoughts on the media?"],
],
inputs=msg,
)
submit.click(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: [], outputs=[chatbot], queue=False)
msg.submit(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
bot, chatbot, chatbot
)
if __name__ == "__main__":
demo.launch() |