Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# masst3r demo | |
# -------------------------------------------------------- | |
import spaces | |
import os | |
import sys | |
import os.path as path | |
import torch | |
import tempfile | |
import gradio | |
import shutil | |
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa | |
MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa | |
sys.path.insert(0, MASt3R_REPO_PATH) # noqa | |
from mast3r.demo import get_reconstructed_scene, get_3D_model_from_scene, set_scenegraph_options | |
from mast3r.model import AsymmetricMASt3R | |
from mast3r.utils.misc import hash_md5 | |
import matplotlib.pyplot as pl | |
pl.ion() | |
# for gpu >= Ampere and pytorch >= 1.12 | |
torch.backends.cuda.matmul.allow_tf32 = True | |
batch_size = 1 | |
weights_path = "naver/" + 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = AsymmetricMASt3R.from_pretrained(weights_path).to(device) | |
chkpt_tag = hash_md5(weights_path) | |
tmpdirname = tempfile.mkdtemp(suffix='_mast3r_gradio_demo') | |
image_size = 512 | |
silent = True | |
gradio_delete_cache = 7200 | |
def local_get_reconstructed_scene(current_scene_state, | |
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, | |
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, | |
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw): | |
return get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, current_scene_state, | |
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, | |
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, | |
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw) | |
def local_get_3D_model_from_scene(scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False, | |
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): | |
return get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh) | |
recon_fun = local_get_reconstructed_scene | |
model_from_scene_fun = local_get_3D_model_from_scene | |
def get_context(delete_cache): | |
css = """.gradio-container {margin: 0 !important; min-width: 100%};""" | |
title = "MASt3R Demo" | |
if delete_cache: | |
return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache)) | |
else: | |
return gradio.Blocks(css=css, title="MASt3R Demo") # for compatibility with older versions | |
with get_context(gradio_delete_cache) as demo: | |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference | |
scene = gradio.State(None) | |
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>') | |
with gradio.Column(): | |
inputfiles = gradio.File(file_count="multiple") | |
with gradio.Row(): | |
with gradio.Column(): | |
with gradio.Row(): | |
lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01) | |
niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000, | |
label="num_iterations", info="For coarse alignment!") | |
lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001) | |
niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000, | |
label="num_iterations", info="For refinement!") | |
optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"], | |
value='refine', label="OptLevel", | |
info="Optimization level") | |
with gradio.Row(): | |
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5., | |
minimum=0., maximum=30., step=0.1, | |
info="Before Fallback to Regr3D!") | |
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", | |
info="Only optimize one set of intrinsics for all views") | |
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), | |
("swin: sliding window", "swin"), | |
("logwin: sliding window with long range", "logwin"), | |
("oneref: match one image with all", "oneref")], | |
value='complete', label="Scenegraph", | |
info="Define how to make pairs", | |
interactive=True) | |
with gradio.Column(visible=False) as win_col: | |
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, | |
minimum=1, maximum=1, step=1) | |
win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence") | |
refid = gradio.Slider(label="Scene Graph: Id", value=0, | |
minimum=0, maximum=0, step=1, visible=False) | |
run_btn = gradio.Button("Run") | |
with gradio.Row(): | |
# adjust the confidence threshold | |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) | |
# adjust the camera size in the output pointcloud | |
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) | |
TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01) | |
with gradio.Row(): | |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") | |
# two post process implemented | |
mask_sky = gradio.Checkbox(value=False, label="Mask sky") | |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") | |
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") | |
outmodel = gradio.Model3D() | |
# events | |
scenegraph_type.change(set_scenegraph_options, | |
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], | |
outputs=[win_col, winsize, win_cyclic, refid]) | |
inputfiles.change(set_scenegraph_options, | |
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], | |
outputs=[win_col, winsize, win_cyclic, refid]) | |
win_cyclic.change(set_scenegraph_options, | |
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], | |
outputs=[win_col, winsize, win_cyclic, refid]) | |
run_btn.click(fn=recon_fun, | |
inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, | |
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, | |
scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics], | |
outputs=[scene, outmodel]) | |
min_conf_thr.release(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
cam_size.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
TSDF_thresh.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
as_pointcloud.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
mask_sky.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
clean_depth.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
transparent_cams.change(model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh], | |
outputs=outmodel) | |
demo.launch(share=None, server_name=None, server_port=None) | |
shutil.rmtree(tmpdirname) | |