import gradio as gr import numpy as np import torch import requests import random import os import sys import pickle from PIL import Image from tqdm.auto import tqdm from datetime import datetime import diffusers from diffusers import DDIMScheduler from transformers import CLIPTextModel, CLIPTokenizer import torch.nn.functional as F from utils import preprocess_mask, process_sketch, process_prompts, process_example ################################################# ################################################# canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" load_js = """ async () => { const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" fetch(url) .then(res => res.text()) .then(text => { const script = document.createElement('script'); script.type = "module" script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); document.head.appendChild(script); }); } """ get_js_colors = """ async (canvasData) => { const canvasEl = document.getElementById("canvas-root"); return [canvasEl._data] } """ css = ''' #color-bg{display:flex;justify-content: center;align-items: center;} .color-bg-item{width: 100%; height: 32px} #main_button{width:100%} <style> ''' ################################################# ################################################# global sreg, creg, sizereg, COUNT, creg_maps, sreg_maps, pipe, text_cond sreg = 0 creg = 0 sizereg = 0 COUNT = 0 reg_sizes = {} creg_maps = {} sreg_maps = {} text_cond = 0 device="cuda" MAX_COLORS = 12 pipe = diffusers.StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", variant="fp16").to(device) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.scheduler.set_timesteps(50) timesteps = pipe.scheduler.timesteps sp_sz = pipe.unet.sample_size with open('./valset.pkl', 'rb') as f: val_prompt = pickle.load(f) ################################################# ################################################# def mod_forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): residual = hidden_states if self.spatial_norm is not None: hidden_states = self.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape) attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) global sreg, creg, COUNT, creg_maps, sreg_maps, reg_sizes, text_cond sa_ = True if encoder_hidden_states is None else False encoder_hidden_states = text_cond if encoder_hidden_states is not None else hidden_states if self.norm_cross: encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states) key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) query = self.head_to_batch_dim(query) key = self.head_to_batch_dim(key) value = self.head_to_batch_dim(value) if COUNT/32 < 50*0.3: dtype = query.dtype if self.upcast_attention: query = query.float() key = key.float() sim = torch.baddbmm(torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), query, key.transpose(-1, -2), beta=0, alpha=self.scale) treg = torch.pow(timesteps[COUNT//32]/1000, 5) ## reg at self-attn if sa_: min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1) max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1) mask = sreg_maps[sim.size(1)].repeat(self.heads,1,1) size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1) sim[int(sim.size(0)/2):] += (mask>0)*size_reg*sreg*treg*(max_value-sim[int(sim.size(0)/2):]) sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*sreg*treg*(sim[int(sim.size(0)/2):]-min_value) ## reg at cross-attn else: min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1) max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1) mask = creg_maps[sim.size(1)].repeat(self.heads,1,1) size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1) sim[int(sim.size(0)/2):] += (mask>0)*size_reg*creg*treg*(max_value-sim[int(sim.size(0)/2):]) sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*creg*treg*(sim[int(sim.size(0)/2):]-min_value) attention_probs = sim.softmax(dim=-1) attention_probs = attention_probs.to(dtype) else: attention_probs = self.get_attention_scores(query, key, attention_mask) COUNT += 1 hidden_states = torch.bmm(attention_probs, value) hidden_states = self.batch_to_head_dim(hidden_states) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if self.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / self.rescale_output_factor return hidden_states for _module in pipe.unet.modules(): if _module.__class__.__name__ == "Attention": _module.__class__.__call__ = mod_forward ################################################# ################################################# def process_generation(binary_matrixes, seed, creg_, sreg_, sizereg_, bsz, master_prompt, *prompts): global creg, sreg, sizereg creg, sreg, sizereg = creg_, sreg_, sizereg_ clipped_prompts = prompts[:len(binary_matrixes)] prompts = [master_prompt] + list(clipped_prompts) layouts = torch.cat([preprocess_mask(mask_, sp_sz, sp_sz, device) for mask_ in binary_matrixes]) text_input = pipe.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False, max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt") cond_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0] uncond_input = pipe.tokenizer([""]*bsz, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt") uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0] ########################### ###### prep for sreg ###### ########################### global sreg_maps, reg_sizes sreg_maps = {} reg_sizes = {} for r in range(4): res = int(sp_sz/np.power(2,r)) layouts_s = F.interpolate(layouts,(res, res),mode='nearest') layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1) reg_sizes[np.power(res, 2)] = 1-sizereg*layouts_s.sum(-1, keepdim=True)/(np.power(res, 2)) sreg_maps[np.power(res, 2)] = layouts_s ########################### ###### prep for creg ###### ########################### pww_maps = torch.zeros(1,77,sp_sz,sp_sz).to(device) for i in range(1,len(prompts)): wlen = text_input['length'][i] - 2 widx = text_input['input_ids'][i][1:1+wlen] for j in range(77): try: if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen: pww_maps[:,j:j+wlen,:,:] = layouts[i-1:i] cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen] break except: raise gr.Error("Please check whether every segment prompt is included in the full text !") return global creg_maps creg_maps = {} for r in range(4): res = int(sp_sz/np.power(2,r)) layout_c = F.interpolate(pww_maps,(res,res),mode='nearest').view(1,77,-1).permute(0,2,1).repeat(bsz,1,1) creg_maps[np.power(res, 2)] = layout_c ########################### #### prep for text_emb #### ########################### global text_cond text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)]) global COUNT COUNT = 0 if seed == -1: latents = torch.randn(bsz,4,sp_sz,sp_sz).to(device) else: latents = torch.randn(bsz,4,sp_sz,sp_sz, generator=torch.Generator().manual_seed(seed)).to(device) image = pipe(prompts[:1]*bsz, latents=latents).images return(image) ################################################# ################################################# ### define the interface with gr.Blocks(css=css) as demo: binary_matrixes = gr.State([]) color_layout = gr.State([]) gr.Markdown('''## DenseDiffusion: Dense Text-to-Image Generation with Attention Modulation''') gr.Markdown(''' #### 😺 Instruction to generate images 😺 <br> (1) Create the image layout. <br> (2) Label each segment with a text prompt. <br> (3) Adjust the full text. The default full text is automatically concatenated from each segment's text. The default one works well, but refineing the full text will further improve the result. <br> (4) Check the generated images, and tune the hyperparameters if needed. <br> - w<sup>c</sup> : The degree of attention modulation at cross-attention layers. <br> - w<sup>s</sup> : The degree of attention modulation at self-attention layers. <br> ''') with gr.Row(): with gr.Box(elem_id="main-image"): canvas_data = gr.JSON(value={}, visible=False) canvas = gr.HTML(canvas_html) button_run = gr.Button("(1) I've finished my sketch ! 😺", elem_id="main_button", interactive=True) prompts = [] colors = [] color_row = [None] * MAX_COLORS with gr.Column(visible=False) as post_sketch: for n in range(MAX_COLORS): if n == 0 : with gr.Row(visible=False) as color_row[n]: colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB", width=100, height=100)) prompts.append(gr.Textbox(label="Prompt for the background (white region)", value="")) else: with gr.Row(visible=False) as color_row[n]: colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB", width=100, height=100)) prompts.append(gr.Textbox(label="Prompt for the segment "+str(n))) get_genprompt_run = gr.Button("(2) I've finished segment labeling ! 😺", elem_id="prompt_button", interactive=True) with gr.Column(visible=False) as gen_prompt_vis: general_prompt = gr.Textbox(value='', label="(3) Textual Description for the entire image", interactive=True) with gr.Accordion("(4) Tune the hyperparameters", open=False): creg_ = gr.Slider(label=" w\u1D9C (The degree of attention modulation at cross-attention layers) ", minimum=0, maximum=2., value=1.0, step=0.1) sreg_ = gr.Slider(label=" w \u02E2 (The degree of attention modulation at self-attention layers) ", minimum=0, maximum=2., value=0.3, step=0.1) sizereg_ = gr.Slider(label="The degree of mask-area adaptive adjustment", minimum=0, maximum=1., value=1., step=0.1) bsz_ = gr.Slider(label="Number of Samples to generate", minimum=1, maximum=4, value=1, step=1) seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1) final_run_btn = gr.Button("Generate ! 😺") layout_path = gr.Textbox(label="layout_path", visible=False) all_prompts = gr.Textbox(label="all_prompts", visible=False) with gr.Column(): out_image = gr.Gallery(label="Result", columns=2, height='auto') button_run.click(process_sketch, inputs=[canvas_data], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False) get_genprompt_run.click(process_prompts, inputs=[binary_matrixes, *prompts], outputs=[gen_prompt_vis, general_prompt], queue=False) final_run_btn.click(process_generation, inputs=[binary_matrixes, seed_, creg_, sreg_, sizereg_, bsz_, general_prompt, *prompts], outputs=out_image) gr.Examples( examples=[['0.png', '***'.join([val_prompt[0]['textual_condition']] + val_prompt[0]['segment_descriptions']), 381940206], ['1.png', '***'.join([val_prompt[1]['textual_condition']] + val_prompt[1]['segment_descriptions']), 307504592], ['5.png', '***'.join([val_prompt[5]['textual_condition']] + val_prompt[5]['segment_descriptions']), 114972190]], inputs=[layout_path, all_prompts, seed_], outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_], fn=process_example, run_on_click=True, label='😺 Examples 😺', ) demo.load(None, None, None, _js=load_js) demo.launch(debug=True)