naveenk-ai commited on
Commit
8e7ba07
·
verified ·
1 Parent(s): edd5fdd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -75
app.py CHANGED
@@ -6,94 +6,65 @@ import langid
6
  from openvoice.api import BaseSpeakerTTS, ToneColorConverter
7
  import openvoice.se_extractor as se_extractor
8
 
9
- # Use environment variables or predefined paths
10
- CKPT_BASE_PATH = os.getenv('CHECKPOINT_PATH', './checkpoints')
11
  EN_SUFFIX = f"{CKPT_BASE_PATH}/base_speakers/EN"
12
  CONVERTER_SUFFIX = f"{CKPT_BASE_PATH}/converter"
13
- OUTPUT_DIR = "./outputs"
14
-
15
- # Ensure directories exist
16
- os.makedirs(CKPT_BASE_PATH, exist_ok=True)
17
  os.makedirs(OUTPUT_DIR, exist_ok=True)
18
 
19
- def download_files():
20
- """Centralized file download method with error handling"""
21
- files_to_download = [
22
- (f"{CONVERTER_SUFFIX}/checkpoint.pth", "converter/checkpoint.pth"),
23
- (f"{CONVERTER_SUFFIX}/config.json", "converter/config.json"),
24
- (f"{EN_SUFFIX}/checkpoint.pth", "base_speakers/EN/checkpoint.pth"),
25
- (f"{EN_SUFFIX}/config.json", "base_speakers/EN/config.json"),
26
- (f"{EN_SUFFIX}/en_default_se.pth", "base_speakers/EN/en_default_se.pth"),
27
- (f"{EN_SUFFIX}/en_style_se.pth", "base_speakers/EN/en_style_se.pth")
28
- ]
29
-
30
- for local_path, remote_path in files_to_download:
31
- try:
32
- os.makedirs(os.path.dirname(local_path), exist_ok=True)
33
- hf_hub_download(
34
- repo_id="myshell-ai/OpenVoice",
35
- filename=remote_path,
36
- local_dir=CKPT_BASE_PATH
37
- )
38
- except Exception as e:
39
- print(f"Error downloading {remote_path}: {e}")
40
- raise
41
 
42
- # Download files early
43
- download_files()
 
 
44
 
45
- # Model Initialization with Error Handling
46
- try:
47
- pt_device = "cpu" # Explicitly use CPU for Hugging Face deployment
48
- en_base_speaker_tts = BaseSpeakerTTS(f"{EN_SUFFIX}/config.json", device=pt_device)
49
- en_base_speaker_tts.load_ckpt(f"{EN_SUFFIX}/checkpoint.pth")
50
 
51
- tone_color_converter = ToneColorConverter(f"{CONVERTER_SUFFIX}/config.json", device=pt_device)
52
- tone_color_converter.load_ckpt(f"{CONVERTER_SUFFIX}/checkpoint.pth")
53
 
54
- en_source_default_se = torch.load(f"{EN_SUFFIX}/en_default_se.pth")
55
- en_source_style_se = torch.load(f"{EN_SUFFIX}/en_style_se.pth")
56
- except Exception as model_init_error:
57
- print(f"Model initialization error: {model_init_error}")
58
- raise
59
 
 
60
  def predict(prompt, style, audio_file_pth, tau):
61
  if len(prompt) < 2 or len(prompt) > 200:
62
  return "Text should be between 2 and 200 characters.", None
63
 
64
  try:
65
- target_se, _ = se_extractor.get_se(
66
- audio_file_pth,
67
- tone_color_converter,
68
- target_dir=OUTPUT_DIR,
69
- vad=True
70
- )
71
  except Exception as e:
72
- return f"Error extracting tone: {str(e)}", None
73
 
74
- try:
75
- src_path = f"{OUTPUT_DIR}/tmp.wav"
76
- en_base_speaker_tts.tts(prompt, src_path, speaker=style, language="English")
77
-
78
- save_path = f"{OUTPUT_DIR}/output.wav"
79
- tone_color_converter.convert(
80
- audio_src_path=src_path,
81
- src_se=en_source_style_se if style != "default" else en_source_default_se,
82
- tgt_se=target_se,
83
- output_path=save_path,
84
- tau=tau
85
- )
86
 
87
- return "Voice cloning completed successfully.", save_path
88
- except Exception as conversion_error:
89
- return f"Voice conversion error: {conversion_error}", None
90
 
 
91
  def create_demo():
92
  with gr.Blocks() as demo:
93
- gr.Markdown("# OpenVoice: Instant Voice Cloning")
94
 
95
  with gr.Row():
96
- input_text = gr.Textbox(label="Text to speak", placeholder="Enter text (2-200 chars)")
97
  style = gr.Dropdown(
98
  label="Style",
99
  choices=["default", "whispering", "cheerful", "terrified", "angry", "sad", "friendly"],
@@ -102,13 +73,7 @@ def create_demo():
102
 
103
  with gr.Row():
104
  reference_audio = gr.Audio(label="Reference Audio", type="filepath")
105
- tau_slider = gr.Slider(
106
- minimum=0.1,
107
- maximum=1.0,
108
- value=0.7,
109
- label="Voice Similarity",
110
- info="Higher values = more similar to reference"
111
- )
112
 
113
  submit_button = gr.Button("Generate Voice")
114
 
@@ -123,5 +88,7 @@ def create_demo():
123
 
124
  return demo
125
 
126
- # Hugging Face Space compatibility
127
- demo = create_demo()
 
 
 
6
  from openvoice.api import BaseSpeakerTTS, ToneColorConverter
7
  import openvoice.se_extractor as se_extractor
8
 
9
+ # Constants
10
+ CKPT_BASE_PATH = "checkpoints"
11
  EN_SUFFIX = f"{CKPT_BASE_PATH}/base_speakers/EN"
12
  CONVERTER_SUFFIX = f"{CKPT_BASE_PATH}/converter"
13
+ OUTPUT_DIR = "outputs/"
 
 
 
14
  os.makedirs(OUTPUT_DIR, exist_ok=True)
15
 
16
+ # Download necessary files
17
+ def download_from_hf_hub(filename, local_dir="./"):
18
+ os.makedirs(local_dir, exist_ok=True)
19
+ hf_hub_download(repo_id="myshell-ai/OpenVoice", filename=filename, local_dir=local_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ for file in [f"{CONVERTER_SUFFIX}/checkpoint.pth", f"{CONVERTER_SUFFIX}/config.json",
22
+ f"{EN_SUFFIX}/checkpoint.pth", f"{EN_SUFFIX}/config.json",
23
+ f"{EN_SUFFIX}/en_default_se.pth", f"{EN_SUFFIX}/en_style_se.pth"]:
24
+ download_from_hf_hub(file)
25
 
26
+ # Initialize models
27
+ pt_device = "cpu"
28
+ en_base_speaker_tts = BaseSpeakerTTS(f"{EN_SUFFIX}/config.json", device=pt_device)
29
+ en_base_speaker_tts.load_ckpt(f"{EN_SUFFIX}/checkpoint.pth")
 
30
 
31
+ tone_color_converter = ToneColorConverter(f"{CONVERTER_SUFFIX}/config.json", device=pt_device)
32
+ tone_color_converter.load_ckpt(f"{CONVERTER_SUFFIX}/checkpoint.pth")
33
 
34
+ en_source_default_se = torch.load(f"{EN_SUFFIX}/en_default_se.pth")
35
+ en_source_style_se = torch.load(f"{EN_SUFFIX}/en_style_se.pth")
 
 
 
36
 
37
+ # Main prediction function
38
  def predict(prompt, style, audio_file_pth, tau):
39
  if len(prompt) < 2 or len(prompt) > 200:
40
  return "Text should be between 2 and 200 characters.", None
41
 
42
  try:
43
+ target_se, _ = se_extractor.get_se(audio_file_pth, tone_color_converter, target_dir=OUTPUT_DIR, vad=True)
 
 
 
 
 
44
  except Exception as e:
45
+ return f"Error getting target tone color: {str(e)}", None
46
 
47
+ src_path = f"{OUTPUT_DIR}/tmp.wav"
48
+ en_base_speaker_tts.tts(prompt, src_path, speaker=style, language="English")
49
+
50
+ save_path = f"{OUTPUT_DIR}/output.wav"
51
+ tone_color_converter.convert(
52
+ audio_src_path=src_path,
53
+ src_se=en_source_style_se if style != "default" else en_source_default_se,
54
+ tgt_se=target_se,
55
+ output_path=save_path,
56
+ tau=tau
57
+ )
 
58
 
59
+ return "Voice cloning completed successfully.", save_path
 
 
60
 
61
+ # Gradio interface
62
  def create_demo():
63
  with gr.Blocks() as demo:
64
+ gr.Markdown("# OpenVoice: Instant Voice Cloning with fine-tuning")
65
 
66
  with gr.Row():
67
+ input_text = gr.Textbox(label="Text to speak", placeholder="Enter text here (2-200 characters)")
68
  style = gr.Dropdown(
69
  label="Style",
70
  choices=["default", "whispering", "cheerful", "terrified", "angry", "sad", "friendly"],
 
73
 
74
  with gr.Row():
75
  reference_audio = gr.Audio(label="Reference Audio", type="filepath")
76
+ tau_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Tau (Voice similarity)", info="Higher values make the output more similar to the reference voice")
 
 
 
 
 
 
77
 
78
  submit_button = gr.Button("Generate Voice")
79
 
 
88
 
89
  return demo
90
 
91
+ # Launch the demo
92
+ if __name__ == "__main__":
93
+ demo = create_demo()
94
+ demo.launch()