FaceRip / app.py
TheChesireCat
Vids and Photos
2d67b07
raw
history blame
5.55 kB
import streamlit as st
import os
import mimetypes
from deface.deface import anonymize_frame
from deface.centerface import CenterFace
from PIL import Image
import imageio.v2 as imageio
import cv2
import tempfile
import os
def streamlit_video_deface_cli(uploaded_file, keep_audio):
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
processed_video_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
with open(temp_video_path, 'wb') as f:
f.write(uploaded_file.read())
if keep_audio:
command = f"deface {temp_video_path} --keep-audio -o {processed_video_temp_path}"
else:
command = f"deface {temp_video_path} -o {processed_video_temp_path}"
os.system(command)
return processed_video_temp_path
def process_video_frame(frame, centerface, threshold, replacewith, mask_scale, ellipse, draw_scores, replaceimg=None, mosaicsize=20):
dets, _ = centerface(frame, threshold=threshold)
anonymize_frame(dets, frame, mask_scale=mask_scale, replacewith=replacewith, ellipse=ellipse, draw_scores=draw_scores, replaceimg=replaceimg, mosaicsize=mosaicsize)
return frame
def streamlit_video_detect(uploaded_file, centerface, threshold, replacewith, mask_scale, ellipse, draw_scores, enable_preview, keep_audio, replaceimg=None, mosaicsize=20):
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
processed_video_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
output_with_audio_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
with open(temp_video_path, 'wb') as f:
f.write(uploaded_file.read())
vidcap = cv2.VideoCapture(temp_video_path)
# Get video properties
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
# Create a video writer object
out = cv2.VideoWriter(processed_video_temp_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
# Progress Bar setup
progress_text = "Processing video. Please wait."
my_bar = st.progress(0, text=progress_text)
frames_processed = 0
while True:
ret, frame = vidcap.read()
if not ret:
break
processed_frame = process_video_frame(frame, centerface, threshold, replacewith, mask_scale, ellipse, draw_scores, replaceimg, mosaicsize)
out.write(processed_frame)
# Progress Bar update
frames_processed += 1
progress_percent = int((frames_processed / total_frames) * 100)
my_bar.progress(progress_percent, text=progress_text)
vidcap.release()
out.release()
# Empty the progress bar after completion
my_bar.empty()
# If keep_audio is checked, use FFmpeg to overlay the original audio on the processed video
if keep_audio:
st.write("Overlaying audio. Please wait...")
command = f"ffmpeg -i {processed_video_temp_path} -i {temp_video_path} -c:v copy -c:a aac -strict experimental {output_with_audio_temp_path}"
os.system(command)
return output_with_audio_temp_path
else:
return processed_video_temp_path
def streamlit_image_detect(uploaded_file, centerface, threshold, replacewith, mask_scale, ellipse, draw_scores, enable_preview, keep_metadata, replaceimg=None, mosaicsize=20):
# Read the uploaded image into a numpy array
frame = imageio.imread(uploaded_file)
# For the sake of this example, I'm skipping the metadata part
dets, _ = centerface(frame, threshold=threshold)
anonymize_frame(dets, frame, mask_scale=mask_scale, replacewith=replacewith, ellipse=ellipse, draw_scores=draw_scores, replaceimg=replaceimg, mosaicsize=mosaicsize)
# Convert numpy array back to a PIL.Image so that we can display/save it easily in Streamlit
result_img = Image.fromarray(frame)
return result_img
def get_file_type(uploaded_file):
mime = mimetypes.guess_type(uploaded_file.name)[0]
if mime is None:
return None
if mime.startswith('video'):
return 'video'
if mime.startswith('image'):
return 'image'
return mime
def main():
st.title("Media Anonymizer")
uploaded_files = st.file_uploader("Upload media files", accept_multiple_files=True)
keep_audio = st.checkbox("Keep Audio")
for uploaded_file in uploaded_files:
file_type = get_file_type(uploaded_file)
if file_type == 'image':
# Initialize centerface or other configurations if needed
centerface = CenterFace()
result_img = streamlit_image_detect(uploaded_file, centerface, threshold=0.2, replacewith='blur', mask_scale=1.0, ellipse=True, draw_scores=False, enable_preview=False, keep_metadata=False)
st.image(result_img, caption=f'Anonymized {uploaded_file.name}', use_column_width=True)
elif file_type == 'video':
centerface = CenterFace()
processed_video_path = streamlit_video_detect(uploaded_file, centerface, threshold=0.2, replacewith='blur', mask_scale=1.0, ellipse=True, draw_scores=False, enable_preview=False, keep_audio=keep_audio)
st.video(processed_video_path, format='video/mp4', start_time=0)
else:
st.write(f"Unsupported file type for {uploaded_file.name}")
if __name__ == "__main__":
main()