Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import unittest | |
| from cotracker.models.core.model_utils import bilinear_sampler | |
| class TestBilinearSampler(unittest.TestCase): | |
| # Sample from an image (4d) | |
| def _test4d(self, align_corners): | |
| H, W = 4, 5 | |
| # Construct a grid to obtain indentity sampling | |
| input = torch.randn(H * W).view(1, 1, H, W).float() | |
| coords = torch.meshgrid(torch.arange(H), torch.arange(W)) | |
| coords = torch.stack(coords[::-1], dim=-1).float()[None] | |
| if not align_corners: | |
| coords = coords + 0.5 | |
| sampled_input = bilinear_sampler(input, coords, align_corners=align_corners) | |
| torch.testing.assert_close(input, sampled_input) | |
| # Sample from a video (5d) | |
| def _test5d(self, align_corners): | |
| T, H, W = 3, 4, 5 | |
| # Construct a grid to obtain indentity sampling | |
| input = torch.randn(H * W).view(1, 1, H, W).float() | |
| input = torch.stack([input, input + 1, input + 2], dim=2) | |
| coords = torch.meshgrid(torch.arange(T), torch.arange(W), torch.arange(H)) | |
| coords = torch.stack(coords, dim=-1).float().permute(0, 2, 1, 3)[None] | |
| if not align_corners: | |
| coords = coords + 0.5 | |
| sampled_input = bilinear_sampler(input, coords, align_corners=align_corners) | |
| torch.testing.assert_close(input, sampled_input) | |
| def test4d(self): | |
| self._test4d(align_corners=True) | |
| self._test4d(align_corners=False) | |
| def test5d(self): | |
| self._test5d(align_corners=True) | |
| self._test5d(align_corners=False) | |
| # run the test | |
| unittest.main() | |