Spaces:
Runtime error
Runtime error
temp-9384289
commited on
Commit
·
ffe27dd
1
Parent(s):
083e9ab
fancy
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
|
2 |
|
3 |
-
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import spaces
|
6 |
# import torch
|
@@ -13,7 +13,7 @@ import keras
|
|
13 |
import time
|
14 |
import os
|
15 |
|
16 |
-
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
17 |
|
18 |
# options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
|
19 |
|
@@ -24,31 +24,32 @@ os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
|
24 |
|
25 |
# @spaces.GPU
|
26 |
# def predict(steps, seed):
|
27 |
-
#
|
28 |
-
#
|
29 |
-
#
|
30 |
-
#
|
31 |
|
32 |
# gr.Interface(
|
33 |
-
#
|
34 |
-
#
|
35 |
-
#
|
36 |
-
#
|
37 |
-
#
|
38 |
-
#
|
39 |
-
#
|
40 |
-
#
|
41 |
-
#
|
42 |
# ).queue().launch()
|
43 |
|
44 |
|
45 |
from diffusers import StableDiffusionPipeline
|
46 |
import torch
|
47 |
|
|
|
48 |
modellist=['nathanReitinger/MNIST-diffusion-oneImage',
|
49 |
-
|
50 |
-
#
|
51 |
-
#
|
52 |
]
|
53 |
|
54 |
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
|
@@ -57,27 +58,29 @@ modellist=['nathanReitinger/MNIST-diffusion-oneImage',
|
|
57 |
|
58 |
|
59 |
def getModel(model):
|
60 |
-
|
61 |
-
print(model_id)
|
62 |
-
if 'diffusion' in model_id:
|
63 |
-
pipe = DiffusionPipeline.from_pretrained(model_id)
|
64 |
-
pipe = pipe.to("cpu")
|
65 |
-
image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
|
76 |
|
77 |
import gradio as gr
|
78 |
-
interface = gr.Interface(fn=getModel,
|
79 |
-
inputs=[gr.Dropdown(modellist)],
|
80 |
-
outputs="image",
|
81 |
-
title='Model Problems (infringement)')
|
82 |
-
|
83 |
interface.launch()
|
|
|
1 |
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
|
2 |
|
3 |
+
import tensorflow as tf
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import spaces
|
6 |
# import torch
|
|
|
13 |
import time
|
14 |
import os
|
15 |
|
16 |
+
# os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
17 |
|
18 |
# options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
|
19 |
|
|
|
24 |
|
25 |
# @spaces.GPU
|
26 |
# def predict(steps, seed):
|
27 |
+
# print("HI")
|
28 |
+
# generator = torch.manual_seed(seed)
|
29 |
+
# for i in range(1,steps):
|
30 |
+
# yield pipeline(generator=generator, num_inference_steps=i).images[0]
|
31 |
|
32 |
# gr.Interface(
|
33 |
+
# predict,
|
34 |
+
# inputs=[
|
35 |
+
# grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
|
36 |
+
# grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
|
37 |
+
# ],
|
38 |
+
# outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
|
39 |
+
# css="#output_image{width: 256px !important; height: 256px !important;}",
|
40 |
+
# title="Model Problems: Infringing on MNIST!",
|
41 |
+
# description="Opening the black box.",
|
42 |
# ).queue().launch()
|
43 |
|
44 |
|
45 |
from diffusers import StableDiffusionPipeline
|
46 |
import torch
|
47 |
|
48 |
+
|
49 |
modellist=['nathanReitinger/MNIST-diffusion-oneImage',
|
50 |
+
'nathanReitinger/MNIST-diffusion',
|
51 |
+
# 'nathanReitinger/MNIST-GAN',
|
52 |
+
# 'nathanReitinger/MNIST-GAN-noDropout'
|
53 |
]
|
54 |
|
55 |
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
|
|
|
58 |
|
59 |
|
60 |
def getModel(model):
|
61 |
+
model_id = model
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
|
64 |
+
RANDO = str(time.time())
|
65 |
+
file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
|
66 |
+
os.makedirs(file_path)
|
67 |
+
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
|
68 |
+
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
|
69 |
|
70 |
+
print(model_id)
|
71 |
+
if 'diffusion' in model_id:
|
72 |
+
pipe = DiffusionPipeline.from_pretrained(model_id)
|
73 |
+
pipe = pipe.to("cpu")
|
74 |
+
image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
|
75 |
+
else:
|
76 |
+
pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
|
77 |
+
pipe = pipe.to("cpu")
|
78 |
+
test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
|
79 |
+
image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
|
80 |
|
81 |
+
return image
|
82 |
|
83 |
|
84 |
import gradio as gr
|
85 |
+
interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs="image", title='Model Problems (infringement)')
|
|
|
|
|
|
|
|
|
86 |
interface.launch()
|