temp-9384289 commited on
Commit
ffe27dd
·
1 Parent(s): 083e9ab
Files changed (1) hide show
  1. app.py +38 -35
app.py CHANGED
@@ -1,6 +1,6 @@
1
  # notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
2
 
3
-
4
  from diffusers import DiffusionPipeline
5
  import spaces
6
  # import torch
@@ -13,7 +13,7 @@ import keras
13
  import time
14
  import os
15
 
16
- os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
17
 
18
  # options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
19
 
@@ -24,31 +24,32 @@ os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
24
 
25
  # @spaces.GPU
26
  # def predict(steps, seed):
27
- # print("HI")
28
- # generator = torch.manual_seed(seed)
29
- # for i in range(1,steps):
30
- # yield pipeline(generator=generator, num_inference_steps=i).images[0]
31
 
32
  # gr.Interface(
33
- # predict,
34
- # inputs=[
35
- # grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
36
- # grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
37
- # ],
38
- # outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
39
- # css="#output_image{width: 256px !important; height: 256px !important;}",
40
- # title="Model Problems: Infringing on MNIST!",
41
- # description="Opening the black box.",
42
  # ).queue().launch()
43
 
44
 
45
  from diffusers import StableDiffusionPipeline
46
  import torch
47
 
 
48
  modellist=['nathanReitinger/MNIST-diffusion-oneImage',
49
- 'nathanReitinger/MNIST-diffusion',
50
- # 'nathanReitinger/MNIST-GAN',
51
- # 'nathanReitinger/MNIST-GAN-noDropout'
52
  ]
53
 
54
  # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
@@ -57,27 +58,29 @@ modellist=['nathanReitinger/MNIST-diffusion-oneImage',
57
 
58
 
59
  def getModel(model):
60
- model_id = model
61
- print(model_id)
62
- if 'diffusion' in model_id:
63
- pipe = DiffusionPipeline.from_pretrained(model_id)
64
- pipe = pipe.to("cpu")
65
- image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
66
 
67
- else:
68
- pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
69
- pipe = pipe.to("cpu")
70
- test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
71
- image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
 
72
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- return image
75
 
76
 
77
  import gradio as gr
78
- interface = gr.Interface(fn=getModel,
79
- inputs=[gr.Dropdown(modellist)],
80
- outputs="image",
81
- title='Model Problems (infringement)')
82
-
83
  interface.launch()
 
1
  # notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
2
 
3
+ import tensorflow as tf
4
  from diffusers import DiffusionPipeline
5
  import spaces
6
  # import torch
 
13
  import time
14
  import os
15
 
16
+ # os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
17
 
18
  # options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
19
 
 
24
 
25
  # @spaces.GPU
26
  # def predict(steps, seed):
27
+ # print("HI")
28
+ # generator = torch.manual_seed(seed)
29
+ # for i in range(1,steps):
30
+ # yield pipeline(generator=generator, num_inference_steps=i).images[0]
31
 
32
  # gr.Interface(
33
+ # predict,
34
+ # inputs=[
35
+ # grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
36
+ # grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
37
+ # ],
38
+ # outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
39
+ # css="#output_image{width: 256px !important; height: 256px !important;}",
40
+ # title="Model Problems: Infringing on MNIST!",
41
+ # description="Opening the black box.",
42
  # ).queue().launch()
43
 
44
 
45
  from diffusers import StableDiffusionPipeline
46
  import torch
47
 
48
+
49
  modellist=['nathanReitinger/MNIST-diffusion-oneImage',
50
+ 'nathanReitinger/MNIST-diffusion',
51
+ # 'nathanReitinger/MNIST-GAN',
52
+ # 'nathanReitinger/MNIST-GAN-noDropout'
53
  ]
54
 
55
  # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
 
58
 
59
 
60
  def getModel(model):
61
+ model_id = model
 
 
 
 
 
62
 
63
+ (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
64
+ RANDO = str(time.time())
65
+ file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
66
+ os.makedirs(file_path)
67
+ train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
68
+ train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
69
 
70
+ print(model_id)
71
+ if 'diffusion' in model_id:
72
+ pipe = DiffusionPipeline.from_pretrained(model_id)
73
+ pipe = pipe.to("cpu")
74
+ image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
75
+ else:
76
+ pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
77
+ pipe = pipe.to("cpu")
78
+ test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
79
+ image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
80
 
81
+ return image
82
 
83
 
84
  import gradio as gr
85
+ interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs="image", title='Model Problems (infringement)')
 
 
 
 
86
  interface.launch()