Spaces:
Runtime error
Runtime error
from diffusers import DiffusionPipeline | |
import spaces | |
import torch | |
import PIL.Image | |
import gradio as gr | |
import gradio.components as grc | |
import numpy as np | |
# import time | |
# models=[ | |
# "runwayml/stable-diffusion-v1-5", | |
# "claudfuen/photorealistic-fuen-v1", | |
# "nitrosocke/redshift-diffusion", | |
# ] | |
# model_box=[ | |
# gr.Interface.load(f"models/{models[0]}",live=True,preprocess=True), | |
# gr.Interface.load(f"models/{models[1]}",live=True,preprocess=True), | |
# gr.Interface.load(f"models/{models[2]}",live=True,preprocess=True), | |
# ] | |
# current_model=model_box[0] | |
pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipeline = pipeline.to(device=device) | |
def predict(steps, seed): | |
generator = torch.manual_seed(seed) | |
for i in range(1,steps): | |
yield pipeline(generator=generator, num_inference_steps=i).images[0] | |
gr.Interface( | |
predict, | |
inputs=[ | |
grc.Slider(0, 1000, label='Inference Steps', value=42, step=1), | |
grc.Slider(0, 2147483647, label='Seed', value=42, step=1), | |
], | |
outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"), | |
css="#output_image{width: 256px !important; height: 256px !important;}", | |
title="Model Problems: Infringing on MNIST!", | |
description="Opening the black box.", | |
).queue().launch() |