Spaces:
Runtime error
Runtime error
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py | |
from diffusers import DiffusionPipeline | |
import spaces | |
# import torch | |
import PIL.Image | |
import gradio as gr | |
import gradio.components as grc | |
import numpy as np | |
from huggingface_hub import from_pretrained_keras | |
import keras | |
import time | |
import os | |
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' | |
# options = ['Placeholder A', 'Placeholder B', 'Placeholder C'] | |
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage") | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# pipeline = pipeline.to(device=device) | |
# @spaces.GPU | |
# def predict(steps, seed): | |
# print("HI") | |
# generator = torch.manual_seed(seed) | |
# for i in range(1,steps): | |
# yield pipeline(generator=generator, num_inference_steps=i).images[0] | |
# gr.Interface( | |
# predict, | |
# inputs=[ | |
# grc.Slider(0, 1000, label='Inference Steps', value=42, step=1), | |
# grc.Slider(0, 2147483647, label='Seed', value=42, step=1), | |
# ], | |
# outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"), | |
# css="#output_image{width: 256px !important; height: 256px !important;}", | |
# title="Model Problems: Infringing on MNIST!", | |
# description="Opening the black box.", | |
# ).queue().launch() | |
from diffusers import StableDiffusionPipeline | |
import torch | |
modellist=['nathanReitinger/MNIST-diffusion-oneImage', | |
'nathanReitinger/MNIST-diffusion', | |
# 'nathanReitinger/MNIST-GAN', | |
# 'nathanReitinger/MNIST-GAN-noDropout' | |
] | |
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage") | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# pipeline = pipeline.to(device=device) | |
def getModel(model): | |
model_id = model | |
print(model_id) | |
if 'diffusion' in model_id: | |
pipe = DiffusionPipeline.from_pretrained(model_id) | |
pipe = pipe.to("cpu") | |
image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0] | |
else: | |
pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion') | |
pipe = pipe.to("cpu") | |
test = from_pretrained_keras('nathanReitinger/MNIST-GAN') | |
image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0] | |
return image | |
import gradio as gr | |
interface = gr.Interface(fn=getModel, | |
inputs=[gr.Dropdown(modellist)], | |
outputs="image", | |
title='Model Problems (infringement)') | |
interface.launch() | |