Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import DDPMPipeline
|
| 2 |
+
import torch
|
| 3 |
+
import PIL.Image
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import random
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
ddpm_pipeline = DDPMPipeline.from_pretrained("nateraw/my-aurora")
|
| 9 |
+
|
| 10 |
+
def predict(seed=42):
|
| 11 |
+
generator = torch.manual_seed(seed)
|
| 12 |
+
images = ddpm_pipeline(generator=generator)["sample"]
|
| 13 |
+
return images[0]
|
| 14 |
+
|
| 15 |
+
random_seed = random.randint(0, 2147483647)
|
| 16 |
+
gr.Interface(
|
| 17 |
+
predict,
|
| 18 |
+
inputs=[
|
| 19 |
+
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
|
| 20 |
+
],
|
| 21 |
+
outputs=gr.Image(shape=[32,32], type="pil", elem_id="output_image"),
|
| 22 |
+
title="Generate aurora with diffusers!",
|
| 23 |
+
description="This demo the <a href=\"https://huggingface.co/nateraw/my-aurora\">my-aurora</a> model to generate aurora created by <a href=\"https://huggingface.co/nateraw\">nateraw</a> using the <a href=\"https://github.com/osanseviero/diffuse-it\">Diffuse It! tool</a>. Inference might take around a minute.",
|
| 24 |
+
).launch(debug=True, enable_queue=True)
|