|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
import plotly.graph_objects as go |
|
|
|
|
|
def get_covered_languages(): |
|
|
|
|
|
all_languages = pd.read_csv('data/merged_language_list_with_duplicates.csv') |
|
|
with open("data/covered_languages.txt") as f: |
|
|
covered_languages = f.read().splitlines() |
|
|
|
|
|
|
|
|
covered_languages = [lang.strip() for sublist in covered_languages for lang in sublist.split(',')] |
|
|
covered_languages = list(set(covered_languages)) |
|
|
|
|
|
|
|
|
covered_language_codes = [all_languages.loc[all_languages['Language'] == lang, 'Code'].values[0] for lang in covered_languages if lang in all_languages['Language'].values] |
|
|
assert len(covered_language_codes) == len(covered_languages), "Mismatch between covered languages and their codes" |
|
|
return covered_language_codes |
|
|
|
|
|
def build_dataframes(covered_language_codes): |
|
|
|
|
|
clean_languages = pd.read_csv('data/merged_language_list_clean.csv') |
|
|
|
|
|
|
|
|
languages_with_lead = clean_languages[clean_languages['Code'].isin(covered_language_codes)] |
|
|
|
|
|
|
|
|
languages_without_lead = clean_languages[~clean_languages['Code'].isin(covered_language_codes)] |
|
|
return languages_with_lead, languages_without_lead |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_piechart(): |
|
|
|
|
|
colors = ['rgba(38, 24, 74, 0.8)', 'rgba(190, 192, 213, 1)'] |
|
|
fig = go.Figure( |
|
|
go.Pie( |
|
|
labels=["With lead", "Without lead"], |
|
|
values=[len(languages_with_lead), len(languages_without_lead)], |
|
|
marker=dict(colors=colors) |
|
|
) |
|
|
) |
|
|
|
|
|
fig.update_layout( |
|
|
|
|
|
title_text="Language Leads", |
|
|
height=500, |
|
|
margin=dict(l=10, r=10, t=50, b=10) |
|
|
) |
|
|
fig.update_traces(textposition='inside', textinfo='label+value') |
|
|
|
|
|
return fig |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("## Language Leads Dashboard") |
|
|
languages_with_lead, languages_without_lead = build_dataframes(get_covered_languages()) |
|
|
with gr.Row(): |
|
|
piechart = create_piechart() |
|
|
gr.Plot(value=piechart, label="Language Leads") |
|
|
with gr.Tab("Looking for leads!"): |
|
|
gr.Markdown("These languages don't have a lead yet! Would you like to lead one of them? Sign up using [this form](https://forms.gle/mFCMXNRjxvyFvW5q9).") |
|
|
gr.DataFrame(languages_without_lead) |
|
|
with gr.Tab("Languages with leads"): |
|
|
gr.Markdown("We found at least one lead for these languages:") |
|
|
gr.DataFrame(languages_with_lead) |
|
|
|
|
|
demo.launch() |