Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,25 @@
|
|
1 |
|
2 |
|
|
|
3 |
import os
|
4 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
5 |
-
|
6 |
from huggingface_hub import HfFolder
|
7 |
-
|
8 |
# Set the token using HfFolder (this persists the token)
|
9 |
HfFolder.save_token(HF_TOKEN)
|
10 |
|
11 |
import transformers
|
12 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
import streamlit as st
|
15 |
|
16 |
-
# Set Hugging Face API Token if required
|
17 |
-
"""
|
18 |
-
os.environ["HF_HOME"] = "path_to_your_huggingface_cache_directory"
|
19 |
-
os.environ["TRANSFORMERS_CACHE"] = "path_to_your_transformers_cache_directory"
|
20 |
-
os.environ["HF_DATASETS_CACHE"] = "path_to_your_datasets_cache_directory"
|
21 |
-
os.environ["HF_METRICS_CACHE"] = "path_to_your_metrics_cache_directory"
|
22 |
-
os.environ["HF_MODULES_CACHE"] = "path_to_your_modules_cache_directory"
|
23 |
-
os.environ["HF_TOKEN"] = "your_hugging_face_access_token"
|
24 |
-
"""
|
25 |
-
|
26 |
-
# Setup Streamlit interface for input
|
27 |
-
st.title("Image to Text Model")
|
28 |
-
|
29 |
-
# Using Pipeline
|
30 |
-
st.header("Using Pipeline for Image Captioning")
|
31 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
32 |
-
|
33 |
-
if uploaded_file is not None:
|
34 |
-
# Assuming the pipeline handles image files directly
|
35 |
-
pipe = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
36 |
-
try:
|
37 |
-
result = pipe(uploaded_file.getvalue())
|
38 |
-
st.write("Generated Caption:", result[0]['generated_text'])
|
39 |
-
except Exception as e:
|
40 |
-
st.error(f"Failed to generate caption: {str(e)}")
|
41 |
-
|
42 |
-
# Load model directly for further analysis or different processing steps
|
43 |
-
st.header("Load Model Directly")
|
44 |
-
|
45 |
-
# Assuming 'nlpconnect/vit-gpt2-image-captioning' is your model identifier
|
46 |
-
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
48 |
-
|
49 |
-
# Example of how you might use model and tokenizer directly
|
50 |
-
# This section can be customized based on what you need to do with the model
|
51 |
-
if st.button("Load Model Information"):
|
52 |
-
try:
|
53 |
-
st.text("Model and Tokenizer loaded successfully")
|
54 |
-
# Display some model details, for example:
|
55 |
-
st.text(f"Model Architecture: {model.__class__.__name__}")
|
56 |
-
st.text(f"Tokenizer Type: {tokenizer.__class__.__name__}")
|
57 |
-
except Exception as e:
|
58 |
-
st.error(f"Error loading model: {str(e)}")
|
59 |
-
|
60 |
-
|
|
|
1 |
|
2 |
|
3 |
+
import streamlit as st
|
4 |
import os
|
5 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
|
|
6 |
from huggingface_hub import HfFolder
|
|
|
7 |
# Set the token using HfFolder (this persists the token)
|
8 |
HfFolder.save_token(HF_TOKEN)
|
9 |
|
10 |
import transformers
|
11 |
+
from transformers import pipeline
|
12 |
+
|
13 |
+
generator = pipeline("text-generation")
|
14 |
+
text = st.text_area("your input")
|
15 |
+
|
16 |
+
if text:
|
17 |
+
out = generator(text)
|
18 |
+
st.json(out)
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|