nastasiasnk commited on
Commit
2c9b33e
·
verified ·
1 Parent(s): 18bc429

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -50
app.py CHANGED
@@ -1,19 +1,5 @@
1
 
2
 
3
- import streamlit as st
4
-
5
-
6
- #from transformers import pipeline
7
-
8
- """
9
- pipe = pipeline ('sentiment-analysis')
10
- text = st.text_area("some text")
11
-
12
- if text:
13
- out = pipe(text)
14
- st.json(out)
15
-
16
- """
17
  import os
18
  HF_TOKEN = os.getenv('HF_TOKEN')
19
 
@@ -23,43 +9,49 @@ from huggingface_hub import HfFolder
23
  HfFolder.save_token(HF_TOKEN)
24
 
25
 
26
- prompt = st.text_area("some text")
27
-
28
-
29
- import torch
30
- import torchaudio
31
- from einops import rearrange
32
- from stable_audio_tools import get_pretrained_model
33
- from stable_audio_tools.inference.generation import generate_diffusion_cond
34
-
35
- device = "cuda" if torch.cuda.is_available() else "cpu"
36
-
37
- # Download model
38
- model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
39
- sample_rate = model_config["sample_rate"]
40
- sample_size = model_config["sample_size"]
41
-
42
- model = model.to(device)
43
-
44
- # Set up text and timing conditioning
45
- conditioning = [{
46
- "prompt": prompt
47
- }]
48
-
49
- # Generate stereo audio
50
- output = generate_diffusion_cond(
51
- model,
52
- conditioning=conditioning,
53
- sample_size=sample_size,
54
- device=device
55
- )
56
-
57
- # Rearrange audio batch to a single sequence
58
- output = rearrange(output, "b d n -> d (b n)")
59
 
60
- # Peak normalize, clip, convert to int16, and save to file
61
- output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
62
- torchaudio.save("output.wav", output, sample_rate)
 
 
 
 
 
 
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
 
 
1
 
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import os
4
  HF_TOKEN = os.getenv('HF_TOKEN')
5
 
 
9
  HfFolder.save_token(HF_TOKEN)
10
 
11
 
12
+ from transformers import pipeline, AutoTokenizer, AutoModel
13
+ import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ # Set Hugging Face API Token if required
16
+ """
17
+ os.environ["HF_HOME"] = "path_to_your_huggingface_cache_directory"
18
+ os.environ["TRANSFORMERS_CACHE"] = "path_to_your_transformers_cache_directory"
19
+ os.environ["HF_DATASETS_CACHE"] = "path_to_your_datasets_cache_directory"
20
+ os.environ["HF_METRICS_CACHE"] = "path_to_your_metrics_cache_directory"
21
+ os.environ["HF_MODULES_CACHE"] = "path_to_your_modules_cache_directory"
22
+ os.environ["HF_TOKEN"] = "your_hugging_face_access_token"
23
+ """
24
 
25
+ # Setup Streamlit interface for input
26
+ st.title("Image to Text Model")
27
+
28
+ # Using Pipeline
29
+ st.header("Using Pipeline for Image Captioning")
30
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
31
+
32
+ if uploaded_file is not None:
33
+ # Assuming the pipeline handles image files directly
34
+ pipe = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
35
+ try:
36
+ result = pipe(uploaded_file.getvalue())
37
+ st.write("Generated Caption:", result[0]['generated_text'])
38
+ except Exception as e:
39
+ st.error(f"Failed to generate caption: {str(e)}")
40
+
41
+ # Load model directly for further analysis or different processing steps
42
+ st.header("Load Model Directly")
43
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
44
+ model = AutoModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
45
+
46
+ # Example of how you might use model and tokenizer directly
47
+ # This section can be customized based on what you need to do with the model
48
+ if st.button("Load Model Information"):
49
+ try:
50
+ st.text("Model and Tokenizer loaded successfully")
51
+ # Display some model details, for example:
52
+ st.text(f"Model Architecture: {model.__class__.__name__}")
53
+ st.text(f"Tokenizer Type: {tokenizer.__class__.__name__}")
54
+ except Exception as e:
55
+ st.error(f"Error loading model: {str(e)}")
56
 
57