|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" |
|
Window based multi-head self attention (W-MSA) module with |
|
relative position bias. It supports both of shifted and |
|
non-shifted window. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, |
|
key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. |
|
Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the |
|
window in pre-training. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
attn_drop=0., |
|
proj_drop=0., |
|
pretrained_window_size=[0, 0]): |
|
|
|
super().__init__() |
|
|
|
self.dim = dim |
|
|
|
self.window_size = window_size |
|
|
|
self.pretrained_window_size = pretrained_window_size |
|
|
|
self.num_heads = num_heads |
|
|
|
self.logit_scale = nn.Parameter( |
|
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) |
|
|
|
|
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, num_heads, bias=False)) |
|
|
|
|
|
relative_coords_h = torch.arange( |
|
-(self.window_size[0] - 1), |
|
self.window_size[0], |
|
dtype=torch.float32) |
|
relative_coords_w = torch.arange( |
|
-(self.window_size[1] - 1), |
|
self.window_size[1], |
|
dtype=torch.float32) |
|
|
|
|
|
relative_coords_table = torch.stack( |
|
torch.meshgrid( |
|
[relative_coords_h, |
|
relative_coords_w])).permute(1, |
|
2, |
|
0).contiguous().unsqueeze(0) |
|
|
|
if pretrained_window_size[0] > 0: |
|
|
|
relative_coords_table[:, :, :, |
|
0] /= (pretrained_window_size[0] - 1) |
|
|
|
relative_coords_table[:, :, :, |
|
1] /= (pretrained_window_size[1] - 1) |
|
|
|
else: |
|
|
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) |
|
|
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) |
|
|
|
relative_coords_table *= 8 |
|
|
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2( |
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8) |
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table) |
|
|
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
|
coords_flatten = torch.flatten(coords, 1) |
|
|
|
relative_coords = coords_flatten[:, :, None] - \ |
|
coords_flatten[:, None, :] |
|
|
|
relative_coords = relative_coords.permute( |
|
1, 2, 0).contiguous() |
|
|
|
relative_coords[:, :, 0] += self.window_size[0] - \ |
|
1 |
|
|
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
|
self.register_buffer("relative_position_index", |
|
relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=False) |
|
|
|
if qkv_bias: |
|
|
|
self.q_bias = nn.Parameter(torch.zeros(dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(dim)) |
|
|
|
else: |
|
|
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) |
|
or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like( |
|
self.v_bias, requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
attn = (F.normalize(q, dim=-1) @ |
|
F.normalize(k, dim=-1).transpose(-2, -1)) |
|
|
|
|
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log( |
|
torch.tensor(1. / 0.01))).exp() |
|
attn = attn * logit_scale |
|
|
|
relative_position_bias_table = self.cpb_mlp( |
|
self.relative_coords_table).view(-1, self.num_heads) |
|
relative_position_bias = \ |
|
relative_position_bias_table[ |
|
self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], -1) |
|
|
|
|
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1).contiguous() |
|
|
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, |
|
N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
|
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f'dim={self.dim}, window_size={self.window_size}, ' \ |
|
f'pretrained_window_size={self.pretrained_window_size}, ' \ |
|
f'num_heads={self.num_heads}' |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|