File size: 10,439 Bytes
ab687e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from pytorch_caney.data.datamodules.mim_datamodule \
    import build_mim_dataloader

from pytorch_caney.models.mim.mim \
    import build_mim_model

from pytorch_caney.training.mim_utils \
    import build_optimizer, save_checkpoint

from pytorch_caney.training.mim_utils import get_grad_norm
from pytorch_caney.lr_scheduler import build_scheduler, setup_scaled_lr
from pytorch_caney.ptc_logging import create_logger
from pytorch_caney.config import get_config

import argparse
import datetime
import joblib
import numpy as np
import os
import time

import torch
import torch.cuda.amp as amp
import torch.backends.cudnn as cudnn
import torch.distributed as dist

from timm.utils import AverageMeter


def parse_args():
    """
    Parse command-line arguments
    """
    parser = argparse.ArgumentParser(
        'pytorch-caney implementation of MiM pre-training script',
        add_help=False)

    parser.add_argument(
        '--cfg',
        type=str,
        required=True,
        metavar="FILE",
        help='path to config file')

    parser.add_argument(
        "--data-paths",
        nargs='+',
        required=True,
        help="paths where dataset is stored")

    parser.add_argument(
        '--dataset',
        type=str,
        required=True,
        help='Dataset to use')

    parser.add_argument(
        '--batch-size',
        type=int,
        help="batch size for single GPU")

    parser.add_argument(
        '--resume',
        help='resume from checkpoint')

    parser.add_argument(
        '--accumulation-steps',
        type=int,
        help="gradient accumulation steps")

    parser.add_argument(
        '--use-checkpoint',
        action='store_true',
        help="whether to use gradient checkpointing to save memory")

    parser.add_argument(
        '--enable-amp',
        action='store_true')

    parser.add_argument(
        '--disable-amp',
        action='store_false',
        dest='enable_amp')

    parser.set_defaults(enable_amp=True)

    parser.add_argument(
        '--output',
        default='output',
        type=str,
        metavar='PATH',
        help='root of output folder, the full path is ' +
        '<output>/<model_name>/<tag> (default: output)')

    parser.add_argument(
        '--tag',
        help='tag of experiment')

    args = parser.parse_args()

    config = get_config(args)

    return args, config


def train(config,
          dataloader,
          model,
          model_wo_ddp,
          optimizer,
          lr_scheduler,
          scaler):
    """
    Start pre-training a specific model and dataset.

    Args:
        config: config object
        dataloader: dataloader to use
        model: model to pre-train
        model_wo_ddp: model to pre-train that is not the DDP version
        optimizer: pytorch optimizer
        lr_scheduler: learning-rate scheduler
        scaler: loss scaler
    """

    logger.info("Start training")

    start_time = time.time()

    for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):

        dataloader.sampler.set_epoch(epoch)

        execute_one_epoch(config, model, dataloader,
                          optimizer, epoch, lr_scheduler, scaler)

        if dist.get_rank() == 0 and \
            (epoch % config.SAVE_FREQ == 0 or
             epoch == (config.TRAIN.EPOCHS - 1)):

            save_checkpoint(config, epoch, model_wo_ddp, 0.,
                            optimizer, lr_scheduler, scaler, logger)

    total_time = time.time() - start_time

    total_time_str = str(datetime.timedelta(seconds=int(total_time)))

    logger.info('Training time {}'.format(total_time_str))


def execute_one_epoch(config,
                      model,
                      dataloader,
                      optimizer,
                      epoch,
                      lr_scheduler,
                      scaler):
    """
    Execute training iterations on a single epoch.

    Args:
        config: config object
        model: model to pre-train
        dataloader: dataloader to use
        optimizer: pytorch optimizer
        epoch: int epoch number
        lr_scheduler: learning-rate scheduler
        scaler: loss scaler
    """

    model.train()

    optimizer.zero_grad()

    num_steps = len(dataloader)

    # Set up logging meters
    batch_time = AverageMeter()
    data_time = AverageMeter()
    loss_meter = AverageMeter()
    norm_meter = AverageMeter()
    loss_scale_meter = AverageMeter()

    start = time.time()
    end = time.time()
    for idx, (img, mask, _) in enumerate(dataloader):

        data_time.update(time.time() - start)

        img = img.cuda(non_blocking=True)
        mask = mask.cuda(non_blocking=True)

        with amp.autocast(enabled=config.ENABLE_AMP):
            loss = model(img, mask)

        if config.TRAIN.ACCUMULATION_STEPS > 1:
            loss = loss / config.TRAIN.ACCUMULATION_STEPS
            scaler.scale(loss).backward()
            loss.backward()
            if config.TRAIN.CLIP_GRAD:
                scaler.unscale_(optimizer)
                grad_norm = torch.nn.utils.clip_grad_norm_(
                    model.parameters(),
                    config.TRAIN.CLIP_GRAD)
            else:
                grad_norm = get_grad_norm(model.parameters())
            if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
                scaler.step(optimizer)
                optimizer.zero_grad()
                scaler.update()
                lr_scheduler.step_update(epoch * num_steps + idx)
        else:
            optimizer.zero_grad()
            scaler.scale(loss).backward()
            if config.TRAIN.CLIP_GRAD:
                scaler.unscale_(optimizer)
                grad_norm = torch.nn.utils.clip_grad_norm_(
                    model.parameters(),
                    config.TRAIN.CLIP_GRAD)
            else:
                grad_norm = get_grad_norm(model.parameters())
            scaler.step(optimizer)
            scaler.update()
            lr_scheduler.step_update(epoch * num_steps + idx)

        torch.cuda.synchronize()

        loss_meter.update(loss.item(), img.size(0))
        norm_meter.update(grad_norm)
        loss_scale_meter.update(scaler.get_scale())
        batch_time.update(time.time() - end)
        end = time.time()

        if idx % config.PRINT_FREQ == 0:
            lr = optimizer.param_groups[0]['lr']
            memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
            etas = batch_time.avg * (num_steps - idx)
            logger.info(
                f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
                f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
                f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
                f'data_time {data_time.val:.4f} ({data_time.avg:.4f})\t'
                f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
                f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
                f'loss_scale {loss_scale_meter.val:.4f}' +
                f' ({loss_scale_meter.avg:.4f})\t'
                f'mem {memory_used:.0f}MB')

    epoch_time = time.time() - start
    logger.info(
        f"EPOCH {epoch} training takes " +
        f"{datetime.timedelta(seconds=int(epoch_time))}")


def main(config):
    """
    Starts training process after building the proper model, optimizer, etc.

    Args:
        config: config object
    """

    pretrain_data_loader = build_mim_dataloader(config, logger)

    simmim_model = build_model(config, logger)

    simmim_optimizer = build_optimizer(config,
                                       simmim_model,
                                       is_pretrain=True,
                                       logger=logger)

    model, model_wo_ddp = make_ddp(simmim_model)

    n_iter_per_epoch = len(pretrain_data_loader)

    lr_scheduler = build_scheduler(config, simmim_optimizer, n_iter_per_epoch)

    scaler = amp.GradScaler()

    train(config,
          pretrain_data_loader,
          model,
          model_wo_ddp,
          simmim_optimizer,
          lr_scheduler,
          scaler)


def build_model(config, logger):

    logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")

    model = build_mim_model(config)

    model.cuda()

    logger.info(str(model))

    return model


def make_ddp(model):

    model = torch.nn.parallel.DistributedDataParallel(
        model, device_ids=[int(os.environ["RANK"])], broadcast_buffers=False)

    model_without_ddp = model.module

    return model, model_without_ddp


def setup_rank_worldsize():
    if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        rank = int(os.environ["RANK"])
        world_size = int(os.environ['WORLD_SIZE'])
        print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
    else:
        rank = -1
        world_size = -1
    return rank, world_size


def setup_distributed_processing(rank, world_size):
    torch.cuda.set_device(int(os.environ["RANK"]))
    torch.distributed.init_process_group(
        backend='nccl', init_method='env://', world_size=world_size, rank=rank)
    torch.distributed.barrier()


def setup_seeding(config):
    seed = config.SEED + dist.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)


if __name__ == '__main__':
    _, config = parse_args()

    rank, world_size = setup_rank_worldsize()

    setup_distributed_processing(rank, world_size)

    setup_seeding(config)

    cudnn.benchmark = True

    linear_scaled_lr, linear_scaled_min_lr, linear_scaled_warmup_lr = \
        setup_scaled_lr(config)

    config.defrost()
    config.TRAIN.BASE_LR = linear_scaled_lr
    config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
    config.TRAIN.MIN_LR = linear_scaled_min_lr
    config.freeze()

    os.makedirs(config.OUTPUT, exist_ok=True)
    logger = create_logger(output_dir=config.OUTPUT,
                           dist_rank=dist.get_rank(),
                           name=f"{config.MODEL.NAME}")

    if dist.get_rank() == 0:
        path = os.path.join(config.OUTPUT, "config.json")
        with open(path, "w") as f:
            f.write(config.dump())
        logger.info(f"Full config saved to {path}")
        logger.info(config.dump())
        config_file_name = f'{config.TAG}.config.sav'
        config_file_path = os.path.join(config.OUTPUT, config_file_name)
        joblib.dump(config, config_file_path)

    main(config)