File size: 5,282 Bytes
ab687e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import logging
from typing import Any, Union, Optional

import torch
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
from pytorch_lightning import LightningDataModule
from pytorch_lightning.utilities.cli import DATAMODULE_REGISTRY

from terragpu.ai.deep_learning.datasets.segmentation_dataset \
    import SegmentationDataset


@DATAMODULE_REGISTRY
class SegmentationDataModule(LightningDataModule):

    def __init__(
        self,

        # Dataset parameters
        dataset_dir: str = 'dataset/',
        images_regex: str = 'dataset/images/*.tif',
        labels_regex: str = 'dataset/labels/*.tif',
        generate_dataset: bool = True,
        tile_size: int = 256,
        max_patches: Union[float, int] = 100,
        augment: bool = True,
        chunks: dict = {'band': 1, 'x': 2048, 'y': 2048},
        input_bands: list = ['CB', 'B', 'G', 'Y', 'R', 'RE', 'N1', 'N2'],
        output_bands: list = ['B', 'G', 'R'],
        seed: int = 24,
        normalize: bool = True,
        pytorch: bool = True,

        # Datamodule parameters
        val_split: float = 0.2,
        test_split: float = 0.1,
        num_workers: int = os.cpu_count(),
        batch_size: int = 32,
        shuffle: bool = True,
        pin_memory: bool = False,
        drop_last: bool = False,

        # Inference parameters
        raster_regex: str = 'rasters/*.tif',

        *args: Any,
        **kwargs: Any,

    ) -> None:

        super().__init__(*args, **kwargs)

        # Dataset parameters
        self.images_regex = images_regex
        self.labels_regex = labels_regex
        self.dataset_dir = dataset_dir
        self.generate_dataset = generate_dataset
        self.tile_size = tile_size
        self.max_patches = max_patches
        self.augment = augment
        self.chunks = chunks
        self.input_bands = input_bands
        self.output_bands = output_bands
        self.seed = seed
        self.normalize = normalize
        self.pytorch = pytorch

        self.val_split = val_split
        self.test_split = test_split
        self.raster_regex = raster_regex

        # Performance parameters
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.shuffle = shuffle
        self.pin_memory = pin_memory
        self.drop_last = drop_last

    def prepare_data(self):
        if self.generate_dataset:
            SegmentationDataset(
                images_regex=self.images_regex,
                labels_regex=self.labels_regex,
                dataset_dir=self.dataset_dir,
                generate_dataset=self.generate_dataset,
                tile_size=self.tile_size,
                max_patches=self.max_patches,
                augment=self.augment,
                chunks=self.chunks,
                input_bands=self.input_bands,
                output_bands=self.output_bands,
                seed=self.seed,
                normalize=self.normalize,
                pytorch=self.pytorch,
            )

    def setup(self, stage: Optional[str] = None):

        # Split into train, val, test
        segmentation_dataset = SegmentationDataset(
            images_regex=self.images_regex,
            labels_regex=self.labels_regex,
            dataset_dir=self.dataset_dir,
            generate_dataset=False,
            tile_size=self.tile_size,
            max_patches=self.max_patches,
            augment=self.augment,
            chunks=self.chunks,
            input_bands=self.input_bands,
            output_bands=self.output_bands,
            seed=self.seed,
            normalize=self.normalize,
            pytorch=self.pytorch,
        )

        # Split datasets into train, val, and test sets
        val_len = round(self.val_split * len(segmentation_dataset))
        test_len = round(self.test_split * len(segmentation_dataset))
        train_len = len(segmentation_dataset) - val_len - test_len

        # Initialize datasets
        self.train_set, self.val_set, self.test_set = random_split(
            segmentation_dataset, lengths=[train_len, val_len, test_len],
            generator=torch.Generator().manual_seed(self.seed)
        )
        logging.info("Initialized datasets...")

    def train_dataloader(self) -> DataLoader:
        loader = DataLoader(
            self.train_set,
            batch_size=self.batch_size,
            shuffle=self.shuffle,
            num_workers=self.num_workers,
            drop_last=self.drop_last,
            pin_memory=self.pin_memory,
        )
        return loader

    def val_dataloader(self) -> DataLoader:
        loader = DataLoader(
            self.val_set,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=self.num_workers,
            drop_last=self.drop_last,
            pin_memory=self.pin_memory,
        )
        return loader

    def test_dataloader(self) -> DataLoader:
        loader = DataLoader(
            self.test_set,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=self.num_workers,
            drop_last=self.drop_last,
            pin_memory=self.pin_memory,
        )
        return loader

    def predict_dataloader(self) -> DataLoader:
        raise NotImplementedError