File size: 7,083 Bytes
ab687e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import yaml
from yacs.config import CfgNode as CN
_C = CN()
# Base config files
_C.BASE = ['']
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
_C.DATA = CN()
# Batch size for a single GPU, could be overwritten by command line argument
_C.DATA.BATCH_SIZE = 128
# Path(s) to dataset, could be overwritten by command line argument
_C.DATA.DATA_PATHS = ['']
# Dataset name
_C.DATA.DATASET = 'MODIS'
# Input image size
_C.DATA.IMG_SIZE = 224
# Interpolation to resize image (random, bilinear, bicubic)
_C.DATA.INTERPOLATION = 'bicubic'
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
_C.DATA.PIN_MEMORY = True
# Number of data loading threads
_C.DATA.NUM_WORKERS = 8
# [SimMIM] Mask patch size for MaskGenerator
_C.DATA.MASK_PATCH_SIZE = 32
# [SimMIM] Mask ratio for MaskGenerator
_C.DATA.MASK_RATIO = 0.6
# -----------------------------------------------------------------------------
# Model settings
# -----------------------------------------------------------------------------
_C.MODEL = CN()
# Model type
_C.MODEL.TYPE = 'swinv2'
# Decoder type
_C.MODEL.DECODER = None
# Model name
_C.MODEL.NAME = 'swinv2_base_patch4_window7_224'
# Pretrained weight from checkpoint, could be from previous pre-training
# could be overwritten by command line argument
_C.MODEL.PRETRAINED = ''
# Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME = ''
# Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 17
# Dropout rate
_C.MODEL.DROP_RATE = 0.0
# Drop path rate
_C.MODEL.DROP_PATH_RATE = 0.1
# Swin Transformer V2 parameters
_C.MODEL.SWINV2 = CN()
_C.MODEL.SWINV2.PATCH_SIZE = 4
_C.MODEL.SWINV2.IN_CHANS = 3
_C.MODEL.SWINV2.EMBED_DIM = 96
_C.MODEL.SWINV2.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWINV2.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWINV2.WINDOW_SIZE = 7
_C.MODEL.SWINV2.MLP_RATIO = 4.
_C.MODEL.SWINV2.QKV_BIAS = True
_C.MODEL.SWINV2.APE = False
_C.MODEL.SWINV2.PATCH_NORM = True
_C.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
_C.LOSS = CN()
_C.LOSS.NAME = 'tversky'
_C.LOSS.MODE = 'multiclass'
_C.LOSS.CLASSES = None
_C.LOSS.LOG = False
_C.LOSS.LOGITS = True
_C.LOSS.SMOOTH = 0.0
_C.LOSS.IGNORE_INDEX = None
_C.LOSS.EPS = 1e-7
_C.LOSS.ALPHA = 0.5
_C.LOSS.BETA = 0.5
_C.LOSS.GAMMA = 1.0
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
_C.TRAIN = CN()
_C.TRAIN.START_EPOCH = 0
_C.TRAIN.EPOCHS = 300
_C.TRAIN.WARMUP_EPOCHS = 20
_C.TRAIN.WEIGHT_DECAY = 0.05
_C.TRAIN.BASE_LR = 5e-4
_C.TRAIN.WARMUP_LR = 5e-7
_C.TRAIN.MIN_LR = 5e-6
# Clip gradient norm
_C.TRAIN.CLIP_GRAD = 5.0
# Auto resume from latest checkpoint
_C.TRAIN.AUTO_RESUME = True
# Gradient accumulation steps
# could be overwritten by command line argument
_C.TRAIN.ACCUMULATION_STEPS = 0
# Whether to use gradient checkpointing to save memory
# could be overwritten by command line argument
_C.TRAIN.USE_CHECKPOINT = False
# LR scheduler
_C.TRAIN.LR_SCHEDULER = CN()
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine'
# Epoch interval to decay LR, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30
# LR decay rate, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1
# Gamma / Multi steps value, used in MultiStepLRScheduler
_C.TRAIN.LR_SCHEDULER.GAMMA = 0.1
_C.TRAIN.LR_SCHEDULER.MULTISTEPS = []
# Optimizer
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'adamw'
# Optimizer Epsilon
_C.TRAIN.OPTIMIZER.EPS = 1e-8
# Optimizer Betas
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# SGD momentum
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
# [SimMIM] Layer decay for fine-tuning
_C.TRAIN.LAYER_DECAY = 1.0
# -----------------------------------------------------------------------------
# Testing settings
# -----------------------------------------------------------------------------
_C.TEST = CN()
# Whether to use center crop when testing
_C.TEST.CROP = True
# -----------------------------------------------------------------------------
# Misc
# -----------------------------------------------------------------------------
# Whether to enable pytorch amp, overwritten by command line argument
_C.ENABLE_AMP = False
# Enable Pytorch automatic mixed precision (amp).
_C.AMP_ENABLE = True
# Path to output folder, overwritten by command line argument
_C.OUTPUT = ''
# Tag of experiment, overwritten by command line argument
_C.TAG = 'pt-caney-default-tag'
# Frequency to save checkpoint
_C.SAVE_FREQ = 1
# Frequency to logging info
_C.PRINT_FREQ = 10
# Fixed random seed
_C.SEED = 42
# Perform evaluation only, overwritten by command line argument
_C.EVAL_MODE = False
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
print('=> merge config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
_update_config_from_file(config, args.cfg)
config.defrost()
def _check_args(name):
if hasattr(args, name) and eval(f'args.{name}'):
return True
return False
# merge from specific arguments
if _check_args('batch_size'):
config.DATA.BATCH_SIZE = args.batch_size
if _check_args('data_paths'):
config.DATA.DATA_PATHS = args.data_paths
if _check_args('dataset'):
config.DATA.DATASET = args.dataset
if _check_args('resume'):
config.MODEL.RESUME = args.resume
if _check_args('pretrained'):
config.MODEL.PRETRAINED = args.pretrained
if _check_args('resume'):
config.MODEL.RESUME = args.resume
if _check_args('accumulation_steps'):
config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps
if _check_args('use_checkpoint'):
config.TRAIN.USE_CHECKPOINT = True
if _check_args('disable_amp'):
config.AMP_ENABLE = False
if _check_args('output'):
config.OUTPUT = args.output
if _check_args('tag'):
config.TAG = args.tag
if _check_args('eval'):
config.EVAL_MODE = True
if _check_args('enable_amp'):
config.ENABLE_AMP = args.enable_amp
# output folder
config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG)
config.freeze()
def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
update_config(config, args)
return config
|