Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def load_model(): | |
try: | |
model_name = "internistai/base-7b-v0.2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return model, tokenizer | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None, None | |
def chat(message, model, tokenizer): | |
try: | |
inputs = tokenizer(message, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
return f"Error generating response: {e}" | |
model, tokenizer = load_model() | |
if model is None or tokenizer is None: | |
print("Failed to load model or tokenizer. Please check the configuration.") | |
iface = gr.Interface(fn=lambda message: chat(message, model, tokenizer), inputs="text", outputs="text") | |
iface.launch() | |