narain commited on
Commit
52261a5
·
1 Parent(s): f82c801
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -18,26 +18,25 @@ segformer_model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segfo
18
  depth_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
19
  depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
20
 
21
- def apply_blur(image, blur_type, blur_strength):
22
  # Convert image to RGB
23
  img = image
24
-
25
  if blur_type == "Gaussian":
26
  # Use Segformer for Gaussian blur
27
  pil_image = Image.fromarray(img)
28
  inputs = segformer_processor(images=pil_image, return_tensors="pt")
29
  outputs = segformer_model(**inputs)
30
  logits = outputs.logits
31
-
32
- mask = logits[0, 12, :, :].detach().cpu().numpy() > -4
33
  mask = cv2.resize(mask.astype(np.uint8), (img.shape[1], img.shape[0]))
34
- mask = cv2.bitwise_not(mask)
35
-
36
  elif blur_type == "Lens":
37
  # Use Depth-Anything for lens blur
38
  pil_image = Image.fromarray(img)
39
  inputs = depth_processor(images=pil_image, return_tensors="pt")
40
-
41
  with torch.no_grad():
42
  outputs = depth_model(**inputs)
43
  predicted_depth = outputs.predicted_depth
@@ -48,10 +47,12 @@ def apply_blur(image, blur_type, blur_strength):
48
  mode="bicubic",
49
  align_corners=False,
50
  )
51
-
52
- mask = prediction[0, 0, :, :].detach().cpu().numpy() < 3
53
  mask = mask.astype(np.uint8)
54
-
 
 
55
  mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
56
 
57
  # Apply blur based on selected type
@@ -67,12 +68,13 @@ def apply_blur(image, blur_type, blur_strength):
67
 
68
  return output
69
 
 
70
  # Define Gradio interface
71
  iface = gr.Interface(
72
  fn=apply_blur,
73
  inputs=[
74
  gr.Image(label="Input Image"),
75
- gr.Radio(["Gaussian", "Lens"], label="Blur Type"),
76
  gr.Slider(1, 30, value=15, step=1, label="Blur Strength")
77
  ],
78
  outputs=gr.Image(label="Output Image"),
 
18
  depth_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
19
  depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
20
 
21
+ def apply_blur(image, blur_type, blur_strength, depth_threshold):
22
  # Convert image to RGB
23
  img = image
24
+
25
  if blur_type == "Gaussian":
26
  # Use Segformer for Gaussian blur
27
  pil_image = Image.fromarray(img)
28
  inputs = segformer_processor(images=pil_image, return_tensors="pt")
29
  outputs = segformer_model(**inputs)
30
  logits = outputs.logits
31
+
32
+ mask = logits[0, 12, :, :].detach().cpu().numpy() > depth_threshold
33
  mask = cv2.resize(mask.astype(np.uint8), (img.shape[1], img.shape[0]))
34
+
 
35
  elif blur_type == "Lens":
36
  # Use Depth-Anything for lens blur
37
  pil_image = Image.fromarray(img)
38
  inputs = depth_processor(images=pil_image, return_tensors="pt")
39
+
40
  with torch.no_grad():
41
  outputs = depth_model(**inputs)
42
  predicted_depth = outputs.predicted_depth
 
47
  mode="bicubic",
48
  align_corners=False,
49
  )
50
+
51
+ mask = prediction[0, 0, :, :].detach().cpu().numpy() < depth_threshold
52
  mask = mask.astype(np.uint8)
53
+
54
+ # Invert mask using cv2
55
+ mask = cv2.bitwise_not(mask)
56
  mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
57
 
58
  # Apply blur based on selected type
 
68
 
69
  return output
70
 
71
+
72
  # Define Gradio interface
73
  iface = gr.Interface(
74
  fn=apply_blur,
75
  inputs=[
76
  gr.Image(label="Input Image"),
77
+ gr.Radio(["Gaussian", "Lens"], label="Blur Type", value="Gaussian"),
78
  gr.Slider(1, 30, value=15, step=1, label="Blur Strength")
79
  ],
80
  outputs=gr.Image(label="Output Image"),