test / app.py
narain
update
991bd3c
raw
history blame
2.28 kB
import gradio as gr
import cv2
import numpy as np
import torch
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
# Load depth estimation model
image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
def apply_blur(image, blur_type, blur_strength, depth_threshold):
# Convert image to RGB
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Depth estimation
pil_image = Image.fromarray(img)
inputs = image_processor(images=pil_image, return_tensors="pt")
with torch.no_grad():
outputs = depth_model(**inputs)
predicted_depth = outputs.predicted_depth
# Interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
# Create mask based on depth threshold
mask = prediction[0, 0, :, :].detach().cpu().numpy() < depth_threshold
mask = mask.astype(np.uint8)
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2) * 255
# Apply blur based on selected type
if blur_type == "Gaussian":
blurred_image = cv2.GaussianBlur(img, (0, 0), sigmaX=blur_strength)
elif blur_type == "Lens":
# Simulate lens blur using a larger kernel
kernel_size = int(blur_strength * 2) * 2 + 1
blurred_image = cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
# Combine blurred and original images using the mask
output = np.where(mask == 255, img, blurred_image)
return output
# Define Gradio interface
iface = gr.Interface(
fn=apply_blur,
inputs=[
gr.Image(label="Input Image"),
gr.Radio(["Gaussian", "Lens"], label="Blur Type"),
gr.Slider(1, 30, value=15, step=1, label="Blur Strength"),
gr.Slider(1, 10, value=3, step=0.1, label="Depth Threshold")
],
outputs=gr.Image(label="Output Image"),
title="Image Segmentation and Blurring",
description="Upload an image and apply Gaussian or Lens blur to the background based on depth estimation."
)
# Launch the app
iface.launch(share=True)