File size: 12,494 Bytes
f2c15d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import * as d3 from 'd3';
export function activationMemory(
a, // attention heads
b, // micro batch size
h, // hidden dimension size
h_ff, // feedforward dimension size (often h_ff = 4h)
L, // number of layers
s, // sequence length
v, // vocab size
mixed = true,
recomputation = "none",
ff_activation = "relu"
) {
console.log('activationMemory called with:', { a, b, h, h_ff, L, s, v, mixed, recomputation, ff_activation });
// https://arxiv.org/pdf/2205.05198
const bytesPerValue = mixed ? 2 : 4;
const oneLayerAttention = s * b * h * (bytesPerValue * 5 + 1) + ((2 * bytesPerValue + 1) * a * s * s * b); // eq (2)
let oneLayerFeedforward;
if (ff_activation === "relu") {
oneLayerFeedforward = (s * b * h * bytesPerValue + (s * b * h_ff * bytesPerValue) // inputs of 1st/2nd linear layers
+ s * b * h); // dropout
} else if (ff_activation === "gelu") {
oneLayerFeedforward = (s * b * h * bytesPerValue + (s * b * h_ff * bytesPerValue) // inputs of 1st/2nd linear layers
+ s * b * h_ff * bytesPerValue // inputs of activation function (not really necessary for Relu)
+ s * b * h); // dropout
} else if (ff_activation === "swiglu") {
oneLayerFeedforward = (s * b * h * bytesPerValue + (s * b * h_ff * bytesPerValue) // inputs of input/output linear layers
+ s * b * h_ff * bytesPerValue * 3 // inputs of activation function
+ s * b * h); // dropout (note that dropout is lower-precision - boolean)
}
const layerNorm = s * b * h * bytesPerValue;
const inputDropout = s * b * h; // section 4.3
const outputLayerNorm = s * b * h * bytesPerValue;
const outputLayerProjection = s * b * h * bytesPerValue;
const outputCrossEntropy = s * b * v * 4; // In FP32
let oneLayer;
if (recomputation === "none") {
oneLayer = oneLayerAttention + oneLayerFeedforward + 2 * layerNorm; // eq (2)
} else if (recomputation === "selective") {
oneLayer = s * b * h * 34; // eq (6)
} else if (recomputation === "full") {
oneLayer = s * b * h * 2;
} else {
throw new Error("Invalid recomputation value");
}
const data = {
name: "activationMemory",
children: [
...Array.from({ length: L }, (_, index) => ({
name: `Layer ${index + 1}`,
children: [
{ name: 'Attention', value: oneLayerAttention },
{ name: 'Feedforward', value: oneLayerFeedforward },
{ name: 'LayerNorm', value: 2 * layerNorm },
]
})),
{ name: 'Dropout', value: inputDropout },
{ name: 'LayerNorm', value: outputLayerNorm },
{ name: 'Projection', value: outputLayerProjection },
{ name: 'Cross Entropy', value: outputCrossEntropy }
]
};
const total = L * oneLayer + inputDropout + outputLayerNorm + outputLayerProjection + outputCrossEntropy;
return data;
}
export function paramGradsOpt(h, L, s, v, k = 8, mixed = true) {
console.log('paramGradsOpt called with:', { h, L, s, v, k, mixed });
const emb = h * (v + s);
const oneLayer = 12 * h ** 2 + 13 * h;
const other = 2 * h;
const n = emb + L * oneLayer + other;
if (mixed) {
k += 4;
}
const bytesPerParameter = mixed ? 2 : 4;
const result = [bytesPerParameter * n, bytesPerParameter * n, k * n];
console.log('paramGradsOpt result:', result);
return result;
}
export function updateGraph() {
console.log('updateGraph called');
const a = +document.getElementById('a').value;
const b = +document.getElementById('b').value;
const h = +document.getElementById('h').value;
const h_ff = +document.getElementById('h_ff').value;
const L = +document.getElementById('L').value;
const s = +document.getElementById('s').value;
const v = +document.getElementById('v').value;
const mixed = document.getElementById('mixed').checked;
const recomputation = document.getElementById('recomputation').value;
const ff_activation = document.getElementById('ff_activation').value;
console.log('Slider values:', { a, b, h, h_ff, L, s, v, mixed, recomputation, ff_activation });
const fixedSize100GB = 100 * 1024 * 1024 * 1024; // 100GB in bytes
const activationMemoryData = activationMemory(a, b, h, h_ff, L, s, v, mixed, recomputation, ff_activation);
const paramGradsOptValue = paramGradsOpt(h, L, s, v)[0];
const data = {
name: "root",
children: [
{
name: 'Total',
value: 0,
children: [
activationMemoryData,
{ name: 'paramGradsOpt', value: paramGradsOptValue }
]
}
]
};
console.log('Data for treemap:', data);
const width = 700;
const height = 450;
const legendHeight = 50;
const svg = d3.select("#graph").select("svg");
svg.selectAll("*").remove();
svg.attr("width", width)
.attr("height", height + legendHeight);
const treemap = d3.treemap()
.size([width, height])
.paddingOuter(3)
.paddingTop(19)
.paddingInner(1)
.round(true);
const root = d3.hierarchy(data)
.sum(d => d.value);
// .sort((a, b) => b.value - a.value);
if (root.children[0].value < fixedSize100GB) {
root.children[0].value = fixedSize100GB;
}
console.log('Treemap root:', root);
treemap(root);
const color = d => {
switch(d.data.name) {
case 'paramGradsOpt': return '#4e79a7'; // Blue
case 'activationMemory': return '#f28e2c'; // Orange
case 'fixed100GB': return '#59a14f'; // Green
case 'Attention': return '#e15759'; // Red
case 'Feedforward': return '#f28e2c'; // Orange
case 'LayerNorm': return '#9b59b6'; // Purple
case 'Dropout': return '#e15759'; // Red
case 'Projection': return '#f28e2c'; // Orange
case 'Cross Entropy': return '#e15759'; // Red
default: return '#59a14f'; // Red (for unexpected cases)
}
};
const cell = svg.selectAll("g")
.data(root.descendants())
.join("g")
.attr("transform", d => `translate(${d.x0},${d.y0})`);
cell.append("rect")
.attr("width", d => d.x1 - d.x0)
.attr("height", d => d.y1 - d.y0)
.attr("fill", d => d.depth === 1 ? "none" : color(d))
.attr("stroke", d => d.depth === 1 ? color(d) : "none")
.attr("stroke-width", 2);
const fontSize = 10;
const padding = 2;
cell.append("text")
.attr("font-size", `${fontSize}px`)
.attr("font-family", "sans-serif")
.each(function(d) {
if (d.depth === 0) return; // Skip root node
const node = d3.select(this);
const name = d.data.name;
const value = formatBytes(d.value);
if (d.depth === 1) {
// Parent node (fixed100GB)
node.attr("transform", `translate(${padding},${fontSize + padding})`)
.attr("font-weight", "bold")
.text(`${name}: ${value}`);
} else {
// Child nodes
node.attr("transform", `translate(${padding},${fontSize + padding})`)
.text(name[0].toUpperCase()) // Display only the first letter
.append("title") // Add title for hover effect
.text(`${name}: ${value}`);
}
});
// Add invisible rect for better hover area
cell.append("rect")
.attr("width", d => d.x1 - d.x0)
.attr("height", d => d.y1 - d.y0)
.attr("fill", "none")
.attr("pointer-events", "all")
.append("title")
.text(d => `${d.data.name}: ${formatBytes(d.value)}`);
// Adjust legend positioning
const legendData = root.children[0].children.concat(root.children[0]);
const legend = svg.append("g")
.attr("font-family", "sans-serif")
.attr("font-size", 10)
.attr("text-anchor", "start")
.attr("transform", `translate(0, ${height})`)
.selectAll("g")
.data(legendData)
.join("g")
.attr("transform", (d, i) => `translate(${i * 240}, 0)`);
legend.append("rect")
.attr("x", 0)
.attr("width", 19)
.attr("height", 19)
.attr("fill", d => d.data.name === 'fixed100GB' ? 'none' : color(d))
.attr("stroke", d => d.data.name === 'fixed100GB' ? color(d) : 'none')
.attr("stroke-width", 2);
legend.append("text")
.attr("x", 24)
.attr("y", 9.5)
.attr("dy", "0.32em")
.text(d => `${d.data.name}: ${formatBytes(d.value)}`);
console.log('Treemap nodes created');
}
function formatBytes(bytes) {
const sizes = ['Bytes', 'KB', 'MB', 'GB', 'TB', 'PB'];
if (bytes === 0) return '0 Bytes';
const i = parseInt(Math.floor(Math.log(bytes) / Math.log(1024)), 10);
return `${(bytes / (1024 ** i)).toFixed(2)} ${sizes[i]}`;
}
const presets = {
"Tiny": { a: 16, b: 3, h: 1024, h_ff: 4096, L: 1, s: 7, v: 30522, mixed: true, recomputation: "none", ff_activation: "gelu" },
"8B": { a: 32, b: 32, h: 4096, h_ff: 16384, L: 32, s: 256, v: 30522, mixed: true, recomputation: "none", ff_activation: "swiglu" },
"70B": { a: 64, b: 32, h: 8192, h_ff: 32768, L: 80, s: 256, v: 30522, mixed: true, recomputation: "none", ff_activation: "swiglu" },
"405B": { a: 128, b: 32, h: 16384, h_ff: 65536, L: 126, s: 256, v: 30522, mixed: true, recomputation: "none", ff_activation: "swiglu" }
};
function setPresetValues(preset) {
if (preset === "custom") return;
const values = presets[preset];
Object.keys(values).forEach(key => {
const element = document.getElementById(key);
const inputElement = document.getElementById(`${key}_input`);
if (element) {
if (element.type === 'checkbox') {
element.checked = values[key];
} else {
element.value = values[key];
}
}
if (inputElement) {
inputElement.value = values[key];
}
});
updateGraph();
}
function syncSliderAndInput(sliderId, inputId) {
const slider = document.getElementById(sliderId);
const input = document.getElementById(inputId);
slider.addEventListener('input', () => {
input.value = slider.value;
updateGraph();
});
input.addEventListener('input', () => {
let value = parseInt(input.value);
if (isNaN(value)) {
value = parseInt(slider.min);
}
value = Math.max(parseInt(slider.min), Math.min(parseInt(slider.max), value));
slider.value = value;
input.value = value;
updateGraph();
});
}
export const init_memory_plot = function () {
console.log('DOM fully loaded and parsed');
const sliderIds = ['a', 'b', 'h', 'h_ff', 'L', 's', 'v']; // Added 'v'
sliderIds.forEach(id => {
syncSliderAndInput(id, `${id}_input`);
});
const recomputationSelect = document.getElementById('recomputation');
recomputationSelect.addEventListener('change', updateGraph);
const ffActivationSelect = document.getElementById('ff_activation');
ffActivationSelect.addEventListener('change', updateGraph);
const mixedCheckbox = document.getElementById('mixed');
mixedCheckbox.addEventListener('change', updateGraph);
const presetSelect = document.getElementById('presets');
presetSelect.addEventListener('change', (event) => {
setPresetValues(event.target.value);
});
// Set max values for sliders based on the highest values in the presets
document.getElementById('a').max = 128;
document.getElementById('b').max = 53248;
document.getElementById('h').max = 16384;
document.getElementById('h_ff').max = 65536;
document.getElementById('L').max = 126;
document.getElementById('s').max = 128000;
document.getElementById('v').max = 100000; // Set a reasonable max for vocabulary size
console.log('Adding svg');
const svg = d3.select("#graph")
.append("svg")
.attr("width", 960)
.attr("height", 500);
updateGraph();
}; |