Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
from langchain.agents import initialize_agent, Tool
|
5 |
+
from langchain.chains import LLMChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.llms import HuggingFacePipeline
|
8 |
+
import json
|
9 |
+
import subprocess
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Load the LLM and tokenizer
|
18 |
+
MODEL_NAME = "unit-mesh/autodev-coder-deepseek-6.7b-finetunes"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
21 |
+
|
22 |
+
# Create a Hugging Face pipeline
|
23 |
+
hf_pipeline = pipeline(
|
24 |
+
"text-generation",
|
25 |
+
model=model,
|
26 |
+
tokenizer=tokenizer,
|
27 |
+
device=0 if torch.cuda.is_available() else -1,
|
28 |
+
max_length=500,
|
29 |
+
temperature=0.7,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Wrap the pipeline in a LangChain LLM
|
33 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
34 |
+
|
35 |
+
# Define tools for the agents
|
36 |
+
tools = [
|
37 |
+
Tool(
|
38 |
+
name="Code Formatter",
|
39 |
+
func=lambda x: subprocess.run(["black", "-"], input=x.encode(), capture_output=True).stdout.decode(),
|
40 |
+
description="Formats code using Black.",
|
41 |
+
),
|
42 |
+
Tool(
|
43 |
+
name="API Generator",
|
44 |
+
func=lambda x: json.dumps({"endpoints": {"example": "POST - Example endpoint."}}),
|
45 |
+
description="Generates API details from code.",
|
46 |
+
),
|
47 |
+
Tool(
|
48 |
+
name="Task Decomposer",
|
49 |
+
func=lambda x: json.dumps({"tasks": ["Design UI", "Develop Backend", "Test App", "Deploy App"]}),
|
50 |
+
description="Breaks down app requirements into smaller tasks.",
|
51 |
+
),
|
52 |
+
]
|
53 |
+
|
54 |
+
# Define prompt templates
|
55 |
+
ui_designer_prompt = PromptTemplate(
|
56 |
+
input_variables=["input"],
|
57 |
+
template="You are a UI Designer. Your task is: {input}",
|
58 |
+
)
|
59 |
+
|
60 |
+
backend_developer_prompt = PromptTemplate(
|
61 |
+
input_variables=["input"],
|
62 |
+
template="You are a Backend Developer. Your task is: {input}",
|
63 |
+
)
|
64 |
+
|
65 |
+
qa_engineer_prompt = PromptTemplate(
|
66 |
+
input_variables=["input"],
|
67 |
+
template="You are a QA Engineer. Your task is: {input}",
|
68 |
+
)
|
69 |
+
|
70 |
+
devops_engineer_prompt = PromptTemplate(
|
71 |
+
input_variables=["input"],
|
72 |
+
template="You are a DevOps Engineer. Your task is: {input}",
|
73 |
+
)
|
74 |
+
|
75 |
+
# Initialize agents
|
76 |
+
ui_designer_agent = initialize_agent(
|
77 |
+
tools=tools,
|
78 |
+
llm=llm,
|
79 |
+
agent="zero-shot-react-description",
|
80 |
+
verbose=True,
|
81 |
+
)
|
82 |
+
|
83 |
+
backend_developer_agent = initialize_agent(
|
84 |
+
tools=tools,
|
85 |
+
llm=llm,
|
86 |
+
agent="zero-shot-react-description",
|
87 |
+
verbose=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
qa_engineer_agent = initialize_agent(
|
91 |
+
tools=tools,
|
92 |
+
llm=llm,
|
93 |
+
agent="zero-shot-react-description",
|
94 |
+
verbose=True,
|
95 |
+
)
|
96 |
+
|
97 |
+
devops_engineer_agent = initialize_agent(
|
98 |
+
tools=tools,
|
99 |
+
llm=llm,
|
100 |
+
agent="zero-shot-react-description",
|
101 |
+
verbose=True,
|
102 |
+
)
|
103 |
+
|
104 |
+
# Multi-Agent Workflow
|
105 |
+
def multi_agent_workflow(requirements: str) -> str:
|
106 |
+
"""
|
107 |
+
Execute a multi-agent workflow to generate a complex app.
|
108 |
+
Args:
|
109 |
+
requirements (str): App requirements.
|
110 |
+
Returns:
|
111 |
+
str: Generated app code and API details.
|
112 |
+
"""
|
113 |
+
global api_details
|
114 |
+
|
115 |
+
# Step 1: Task Decomposition
|
116 |
+
try:
|
117 |
+
task_decomposition = ui_designer_agent.run(
|
118 |
+
f"Break down the following app requirements into smaller tasks: {requirements}"
|
119 |
+
)
|
120 |
+
tasks = json.loads(task_decomposition)["tasks"]
|
121 |
+
except Exception as e:
|
122 |
+
logger.error(f"Task decomposition failed: {str(e)}")
|
123 |
+
return f"Task decomposition failed: {str(e)}"
|
124 |
+
|
125 |
+
# Step 2: Code Generation
|
126 |
+
try:
|
127 |
+
ui_code = ui_designer_agent.run(f"Generate the UI code for: {tasks[0]}")
|
128 |
+
backend_code = backend_developer_agent.run(f"Generate the backend code for: {tasks[1]}")
|
129 |
+
except Exception as e:
|
130 |
+
logger.error(f"Code generation failed: {str(e)}")
|
131 |
+
return f"Code generation failed: {str(e)}"
|
132 |
+
|
133 |
+
# Step 3: Code Formatting
|
134 |
+
try:
|
135 |
+
formatted_ui_code = ui_designer_agent.run(f"Format the following code: {ui_code}")
|
136 |
+
formatted_backend_code = backend_developer_agent.run(f"Format the following code: {backend_code}")
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Code formatting failed: {str(e)}")
|
139 |
+
return f"Code formatting failed: {str(e)}"
|
140 |
+
|
141 |
+
# Step 4: Integration
|
142 |
+
try:
|
143 |
+
combined_code = f"{formatted_ui_code}\n\n{formatted_backend_code}"
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Code integration failed: {str(e)}")
|
146 |
+
return f"Code integration failed: {str(e)}"
|
147 |
+
|
148 |
+
# Step 5: Testing
|
149 |
+
try:
|
150 |
+
test_results = qa_engineer_agent.run(f"Test the following app: {combined_code}")
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Testing failed: {str(e)}")
|
153 |
+
return f"Testing failed: {str(e)}"
|
154 |
+
|
155 |
+
# Step 6: Deployment
|
156 |
+
try:
|
157 |
+
deployment_status = devops_engineer_agent.run(f"Deploy the following app: {combined_code}")
|
158 |
+
except Exception as e:
|
159 |
+
logger.error(f"Deployment failed: {str(e)}")
|
160 |
+
return f"Deployment failed: {str(e)}"
|
161 |
+
|
162 |
+
# Step 7: API Documentation
|
163 |
+
try:
|
164 |
+
api_details = backend_developer_agent.run(f"Generate API details for: {combined_code}")
|
165 |
+
except Exception as e:
|
166 |
+
logger.error(f"API documentation failed: {str(e)}")
|
167 |
+
return f"API documentation failed: {str(e)}"
|
168 |
+
|
169 |
+
# Return the results
|
170 |
+
return f"""
|
171 |
+
Generated App Code:
|
172 |
+
{combined_code}
|
173 |
+
|
174 |
+
Test Results:
|
175 |
+
{test_results}
|
176 |
+
|
177 |
+
Deployment Status:
|
178 |
+
{deployment_status}
|
179 |
+
|
180 |
+
API Details:
|
181 |
+
{api_details}
|
182 |
+
"""
|
183 |
+
|
184 |
+
# Gradio Interface
|
185 |
+
def app_generator(requirements: str):
|
186 |
+
"""
|
187 |
+
Generate an app based on the provided requirements.
|
188 |
+
Args:
|
189 |
+
requirements (str): App requirements.
|
190 |
+
Returns:
|
191 |
+
str: Generated app code and API details.
|
192 |
+
"""
|
193 |
+
return multi_agent_workflow(requirements)
|
194 |
+
|
195 |
+
# Gradio UI
|
196 |
+
with gr.Blocks() as ui:
|
197 |
+
gr.Markdown("# Autonomous App Generator with LangChain Agents")
|
198 |
+
with gr.Row():
|
199 |
+
requirements_input = gr.Textbox(label="App Requirements", placeholder="Describe the app you want to build...")
|
200 |
+
generate_button = gr.Button("Generate App")
|
201 |
+
output = gr.Textbox(label="Generated App Code and API Details", lines=20)
|
202 |
+
generate_button.click(app_generator, inputs=requirements_input, outputs=output)
|
203 |
+
|
204 |
+
# Run the Gradio app
|
205 |
+
if __name__ == "__main__":
|
206 |
+
ui.launch()
|