"""Neurosymbolic reasoning implementation.""" import logging from typing import Dict, Any, List, Tuple import json from .base import ReasoningStrategy class NeurosymbolicReasoning(ReasoningStrategy): """Implements neurosymbolic reasoning combining neural and symbolic approaches.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Neural processing neural_features = await self._neural_processing(query, context) # Symbolic reasoning symbolic_rules = await self._symbolic_reasoning(neural_features, context) # Integration integrated = await self._neurosymbolic_integration(neural_features, symbolic_rules, context) # Final inference conclusion = await self._final_inference(integrated, context) return { "success": True, "answer": conclusion["answer"], "neural_features": neural_features, "symbolic_rules": symbolic_rules, "integrated_reasoning": integrated, "confidence": conclusion["confidence"], "explanation": conclusion["explanation"] } except Exception as e: return {"success": False, "error": str(e)} async def _neural_processing(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Extract neural features from query: Query: {query} Context: {json.dumps(context)} For each feature: 1. [Type]: Feature type 2. [Value]: Extracted value 3. [Confidence]: Extraction confidence 4. [Relations]: Related concepts Format as: [F1] Type: ... Value: ... Confidence: ... Relations: ... """ response = await context["groq_api"].predict(prompt) return self._parse_features(response["answer"]) async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate symbolic rules from features: Features: {json.dumps(features)} Context: {json.dumps(context)} For each rule: 1. [Condition]: Rule condition 2. [Implication]: What it implies 3. [Certainty]: Rule certainty 4. [Source]: Derivation source Format as: [R1] Condition: ... Implication: ... Certainty: ... Source: ... """ response = await context["groq_api"].predict(prompt) return self._parse_rules(response["answer"]) async def _neurosymbolic_integration(self, features: List[Dict[str, Any]], rules: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Integrate neural and symbolic components: Features: {json.dumps(features)} Rules: {json.dumps(rules)} Context: {json.dumps(context)} For each integration: 1. [Components]: What is being integrated 2. [Method]: How they are combined 3. [Result]: Integration outcome 4. [Confidence]: Integration confidence Format as: [I1] Components: ... Method: ... Result: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) return self._parse_integration(response["answer"]) async def _final_inference(self, integrated: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Draw final conclusions from integrated reasoning: Integrated: {json.dumps(integrated)} Context: {json.dumps(context)} Provide: 1. Final answer/conclusion 2. Confidence level (0-1) 3. Explanation of reasoning 4. Key factors considered """ response = await context["groq_api"].predict(prompt) return self._parse_conclusion(response["answer"]) def _parse_features(self, response: str) -> List[Dict[str, Any]]: """Parse neural features from response.""" features = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[F'): if current: features.append(current) current = { "type": "", "value": "", "confidence": 0.0, "relations": [] } elif current: if line.startswith('Type:'): current["type"] = line[5:].strip() elif line.startswith('Value:'): current["value"] = line[6:].strip() elif line.startswith('Confidence:'): try: current["confidence"] = float(line[11:].strip()) except: pass elif line.startswith('Relations:'): current["relations"] = [r.strip() for r in line[10:].split(',')] if current: features.append(current) return features def _parse_rules(self, response: str) -> List[Dict[str, Any]]: """Parse symbolic rules from response.""" rules = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[R'): if current: rules.append(current) current = { "condition": "", "implication": "", "certainty": 0.0, "source": "" } elif current: if line.startswith('Condition:'): current["condition"] = line[10:].strip() elif line.startswith('Implication:'): current["implication"] = line[12:].strip() elif line.startswith('Certainty:'): try: current["certainty"] = float(line[10:].strip()) except: pass elif line.startswith('Source:'): current["source"] = line[7:].strip() if current: rules.append(current) return rules def _parse_integration(self, response: str) -> List[Dict[str, Any]]: """Parse integration results from response.""" integrations = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current: integrations.append(current) current = { "components": "", "method": "", "result": "", "confidence": 0.0 } elif current: if line.startswith('Components:'): current["components"] = line[11:].strip() elif line.startswith('Method:'): current["method"] = line[7:].strip() elif line.startswith('Result:'): current["result"] = line[7:].strip() elif line.startswith('Confidence:'): try: current["confidence"] = float(line[11:].strip()) except: pass if current: integrations.append(current) return integrations def _parse_conclusion(self, response: str) -> Dict[str, Any]: """Parse final conclusion from response.""" conclusion = { "answer": "", "confidence": 0.0, "explanation": "", "factors": [] } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Answer:'): conclusion["answer"] = line[7:].strip() elif line.startswith('Confidence:'): try: conclusion["confidence"] = float(line[11:].strip()) except: conclusion["confidence"] = 0.5 elif line.startswith('Explanation:'): conclusion["explanation"] = line[12:].strip() elif line.startswith('Factors:'): mode = "factors" elif mode == "factors" and line.startswith('- '): conclusion["factors"].append(line[2:].strip()) return conclusion