import streamlit as st from model import load_model, generate_answer,find_context from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from dataset import dataset_a from sentence_transformers import SentenceTransformer # Load model automatically MODEL_PATH = "namngo/CDS_vit5" model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) pos_sentences = dataset_a["context"] model2=SentenceTransformer('namngo/CDS_retrival') # Streamlit UI customization st.set_page_config(page_title="Chat Bot Công dân số", page_icon="🤖", layout="wide") st.title("🤖 Chat Bot Công dân số") st.markdown("---") st.success("✅ Model Loaded Successfully") st.sidebar.header("⚙️ Settings") max_length = st.sidebar.slider("Max Answer Length", min_value=50, max_value=500, value=256, step=10) st.subheader("📌 Ask a Question") # context = st.text_area("📝 Context:", height=150) question = st.text_input("❓ Question:") context=find_context(pos_sentences,question,model2) if st.button("🚀 Generate Answer"): answer = generate_answer(model, tokenizer, context, question, max_length=max_length) st.markdown("### 💡 Answer:") st.info(answer)