Spaces:
Runtime error
Runtime error
File size: 13,686 Bytes
24539ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# app.py
import gradio as gr
import requests
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import json
import time
from bs4 import BeautifulSoup
# Selenium-related imports
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager
def get_raw_data(station_id):
"""
Get raw data from the NWS API.
"""
headers = {
'User-Agent': '(Weather Data Viewer, [email protected])',
'Accept': 'application/json'
}
# Calculate date range for last 3 days
end_time = datetime.utcnow()
start_time = end_time - timedelta(hours=72)
params = {
'start': start_time.isoformat() + 'Z',
'end': end_time.isoformat() + 'Z'
}
url = f"https://api.weather.gov/stations/{station_id}/observations"
try:
print("\nFetching observations...")
print(f"URL: {url}")
print(f"Time range: {start_time} to {end_time}")
response = requests.get(url, headers=headers, params=params)
print(f"Response status: {response.status_code}")
if response.status_code != 200:
print(f"Response content: {response.text}")
response.raise_for_status()
data = response.json()
if 'features' in data:
print(f"\nNumber of observations: {len(data['features'])}")
if len(data['features']) > 0:
print("\nFirst observation properties:")
print(json.dumps(data['features'][0]['properties'], indent=2))
keys = set()
for feature in data['features']:
keys.update(feature['properties'].keys())
print("\nAll available property keys:")
print(sorted(list(keys)))
return data
except Exception as e:
print(f"Error fetching data: {e}")
import traceback
traceback.print_exc()
return None
def scrape_snow_depth():
"""
Uses Selenium with a headless browser to load the weather.gov timeseries page,
waits until an element containing 'Snow Depth' is present, then extracts the table data.
Returns a DataFrame with columns "timestamp" and "snowDepth".
"""
url = ("https://www.weather.gov/wrh/timeseries?"
"site=YCTIM&hours=720&units=english&chart=on&headers=on&"
"obs=tabular&hourly=false&pview=standard&font=12&plot=")
# Set up headless Chrome options
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
# Tell Selenium where Chromium is located
chrome_options.binary_location = "/usr/bin/chromium-browser"
# Initialize Chrome using the Service object (Selenium 4+)
service = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service, options=chrome_options)
driver.get(url)
try:
# Wait up to 30 seconds for any element containing the text "Snow Depth" to appear
WebDriverWait(driver, 30).until(
EC.presence_of_element_located((By.XPATH, "//*[contains(text(), 'Snow Depth')]"))
)
except Exception as e:
print("Timeout waiting for 'Snow Depth' element to appear:", e)
# Allow extra time for dynamic content to load
time.sleep(5)
page_source = driver.page_source
driver.quit()
soup = BeautifulSoup(page_source, 'html.parser')
# Look through all tables for one that contains "Snow Depth" in its text
tables = soup.find_all("table")
target_table = None
for table in tables:
table_text = table.get_text()
print("Found table text snippet:", table_text[:100])
if "Snow Depth" in table_text:
target_table = table
break
if target_table is None:
print("No table with 'Snow Depth' found in the page.")
return pd.DataFrame()
# Look for header cells in the table
header_row = target_table.find("tr")
if not header_row:
print("No header row found in the table.")
return pd.DataFrame()
headers = [th.get_text(strip=True) for th in header_row.find_all("th")]
print("Table headers found:", headers)
# Identify column indices (using case-insensitive match)
time_index = None
snow_index = None
for i, header in enumerate(headers):
if "time" in header.lower():
time_index = i
if "snow" in header.lower():
snow_index = i
if time_index is None or snow_index is None:
print("Required columns ('Time' and 'Snow Depth') not found in the table headers.")
return pd.DataFrame()
# Extract rows (skip header)
data = []
rows = target_table.find_all("tr")[1:]
for row in rows:
cells = row.find_all("td")
if len(cells) <= max(time_index, snow_index):
continue
time_text = cells[time_index].get_text(strip=True)
snow_text = cells[snow_index].get_text(strip=True)
data.append((time_text, snow_text))
df = pd.DataFrame(data, columns=["Time", "Snow Depth"])
# Convert the "Time" column to datetime
df["Time"] = pd.to_datetime(df["Time"], errors="coerce")
# Convert "Snow Depth" to numeric (in inches)
df["Snow Depth"] = pd.to_numeric(df["Snow Depth"], errors="coerce")
print("Scraped snow depth data:")
print(df.head())
# Rename columns to match API data
return df.rename(columns={"Time": "timestamp", "Snow Depth": "snowDepth"})
def parse_raw_data(data):
"""
Parse the raw JSON API data into a DataFrame.
"""
if not data or 'features' not in data:
return None
records = []
for feature in data['features']:
props = feature['properties']
# Extract any snow-related fields if present
snow_fields = {k: v for k, v in props.items() if 'snow' in k.lower()}
if snow_fields:
print("\nFound snow-related fields:")
for k, v in snow_fields.items():
print(f"{k}: {v}")
record = {
'timestamp': props['timestamp'],
'temperature': props.get('temperature', {}).get('value'),
'wind_speed': props.get('windSpeed', {}).get('value'),
'wind_direction': props.get('windDirection', {}).get('value')
}
# Add any snow fields
for k, v in snow_fields.items():
if isinstance(v, dict) and 'value' in v:
record[k] = v['value']
else:
record[k] = v
records.append(record)
df = pd.DataFrame(records)
print("\nDataFrame columns from API:")
print(df.columns.tolist())
print("\nSample of raw API data:")
print(df.head())
return df
def process_weather_data(df):
"""
Process the weather DataFrame.
"""
if df is None or df.empty:
return None
# Convert timestamp column to datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['date'] = df['timestamp'].dt.date
# Convert temperature from Celsius to Fahrenheit if available
if df['temperature'].notna().all():
df['temperature'] = (df['temperature'] * 9/5) + 32
# Convert wind speed from km/h to mph if available (original unit is km/h)
if df['wind_speed'].notna().all():
df['wind_speed'] = df['wind_speed'] * 0.621371
return df
def create_wind_rose(ax, data, title):
"""
Create a wind rose subplot.
"""
if data.empty or data['wind_direction'].isna().all() or data['wind_speed'].isna().all():
ax.text(0.5, 0.5, 'No wind data available',
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
ax.set_title(title)
return
plot_data = data.copy()
direction_bins = np.arange(0, 361, 45)
directions = ['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW']
mask = plot_data['wind_direction'].notna() & plot_data['wind_speed'].notna()
plot_data = plot_data[mask]
if plot_data.empty:
ax.text(0.5, 0.5, 'No valid wind data',
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
ax.set_title(title)
return
plot_data.loc[:, 'direction_bin'] = pd.cut(plot_data['wind_direction'],
bins=direction_bins,
labels=directions,
include_lowest=True)
wind_stats = plot_data.groupby('direction_bin', observed=True)['wind_speed'].mean()
all_directions = pd.Series(0.0, index=directions)
wind_stats = wind_stats.combine_first(all_directions)
angles = np.linspace(0, 2*np.pi, len(directions), endpoint=False)
values = [wind_stats[d] for d in directions]
if any(v > 0 for v in values):
ax.bar(angles, values, width=0.5, alpha=0.6)
ax.set_xticks(angles)
ax.set_xticklabels(directions)
else:
ax.text(0.5, 0.5, 'No significant wind',
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
ax.set_title(title)
def create_visualizations(df):
"""
Create static visualizations using matplotlib.
Plots temperature, wind speed, and snow depth.
"""
fig = plt.figure(figsize=(20, 24))
gs = GridSpec(5, 2, figure=fig)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, :])
ax3 = fig.add_subplot(gs[2, :])
if not df['temperature'].isna().all():
ax1.plot(df['timestamp'], df['temperature'], linewidth=2)
ax1.set_title('Temperature Over Time')
ax1.set_ylabel('Temperature (°F)')
ax1.set_xlabel('')
ax1.grid(True)
if not df['wind_speed'].isna().all():
ax2.plot(df['timestamp'], df['wind_speed'], linewidth=2)
ax2.set_title('Wind Speed Over Time')
ax2.set_ylabel('Wind Speed (mph)')
ax2.set_xlabel('')
ax2.grid(True)
if 'snowDepth' in df.columns and not df['snowDepth'].isna().all():
ax3.plot(df['timestamp'], df['snowDepth'], linewidth=2)
ax3.set_ylim(0, 80)
else:
ax3.text(0.5, 0.5, 'No snow depth data available',
horizontalalignment='center',
verticalalignment='center',
transform=ax3.transAxes)
ax3.set_title('Snow Depth')
ax3.set_ylabel('Snow Depth (inches)')
ax3.set_xlabel('')
ax3.grid(True)
for ax in [ax1, ax2, ax3]:
ax.tick_params(axis='x', rotation=45)
ax.xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter('%Y-%m-%d %H:%M'))
dates = sorted(df['date'].unique())
for i, date in enumerate(dates):
if i < 2:
ax = fig.add_subplot(gs[4, i], projection='polar')
day_data = df[df['date'] == date].copy()
create_wind_rose(ax, day_data, pd.to_datetime(date).strftime('%Y-%m-%d'))
plt.tight_layout()
return fig
def get_weather_data(station_id, hours):
"""
Main function to get and process weather data.
Combines API data and scraped snow depth data.
"""
try:
raw_data = get_raw_data(station_id)
if raw_data is None:
return None, "Failed to fetch data from API"
df = parse_raw_data(raw_data)
if df is None:
return None, "Failed to parse API data"
df = process_weather_data(df)
if df is None:
return None, "Failed to process API data"
# Attempt to scrape snow depth data using Selenium
snow_df = scrape_snow_depth()
if not snow_df.empty:
df = df.sort_values('timestamp')
snow_df = snow_df.sort_values('timestamp')
df = pd.merge_asof(df, snow_df, on='timestamp', tolerance=pd.Timedelta('30min'), direction='nearest')
print("\nProcessed combined data sample:")
print(df.head())
return df, None
except Exception as e:
return None, f"Error: {str(e)}"
def fetch_and_display(station_id, hours):
"""
Fetch data and create visualization.
"""
df, error = get_weather_data(station_id, hours)
if error:
return None, error
if df is not None and not df.empty:
fig = create_visualizations(df)
return fig, "Data fetched successfully!"
return None, "No data available for the specified parameters."
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Weather Data Viewer")
gr.Markdown("Displays temperature, wind speed, and snow depth from NWS stations.")
with gr.Row():
station_id = gr.Textbox(label="Station ID", value="YCTIM")
hours = gr.Slider(minimum=24, maximum=168, value=72, label="Hours of Data", step=24)
fetch_btn = gr.Button("Fetch Data")
plot_output = gr.Plot()
message = gr.Textbox(label="Status")
fetch_btn.click(
fn=fetch_and_display,
inputs=[station_id, hours],
outputs=[plot_output, message]
)
# Launch the app
demo.launch() |