Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import os
|
5 |
-
import gc
|
6 |
-
from tqdm import tqdm
|
7 |
-
import logging
|
8 |
from PIL import Image
|
|
|
9 |
from datetime import datetime
|
10 |
import struct
|
11 |
|
12 |
-
# Set up logging
|
13 |
-
logging.basicConfig(level=logging.INFO)
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
def create_xmp_block(width, height):
|
17 |
"""Create XMP metadata block following ExifTool's exact format."""
|
18 |
xmp = (
|
@@ -68,228 +59,43 @@ def write_xmp_to_jpg(input_path, output_path, width, height):
|
|
68 |
with open(output_path, 'wb') as f:
|
69 |
f.write(output)
|
70 |
|
71 |
-
def
|
72 |
-
"""
|
73 |
-
target_height = 1080
|
74 |
-
aspect_ratio = frame.shape[1] / frame.shape[0]
|
75 |
-
target_width = int(target_height * aspect_ratio)
|
76 |
-
frame = cv2.resize(frame, (target_width, target_height))
|
77 |
-
|
78 |
-
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
79 |
-
lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
|
80 |
-
l, a, b = cv2.split(lab)
|
81 |
-
cl = clahe.apply(l)
|
82 |
-
enhanced = cv2.merge((cl,a,b))
|
83 |
-
enhanced = cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
|
84 |
-
|
85 |
-
return enhanced
|
86 |
-
|
87 |
-
def extract_frames(video_path, num_frames=24):
|
88 |
-
"""Extract frames with progress tracking"""
|
89 |
-
try:
|
90 |
-
logger.info(f"Opening video: {video_path}")
|
91 |
-
cap = cv2.VideoCapture(video_path)
|
92 |
-
if not cap.isOpened():
|
93 |
-
raise Exception("Could not open video file")
|
94 |
-
|
95 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
96 |
-
frame_indices = np.linspace(0, total_frames-1, num_frames, dtype=int)
|
97 |
-
frames = []
|
98 |
-
|
99 |
-
for idx in frame_indices:
|
100 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
101 |
-
ret, frame = cap.read()
|
102 |
-
if ret:
|
103 |
-
processed = preprocess_frame(frame)
|
104 |
-
frames.append(processed)
|
105 |
-
gc.collect()
|
106 |
-
|
107 |
-
cap.release()
|
108 |
-
logger.info(f"Extracted {len(frames)} frames")
|
109 |
-
return frames
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
if 'cap' in locals():
|
113 |
-
cap.release()
|
114 |
-
raise Exception(f"Frame extraction failed: {str(e)}")
|
115 |
-
|
116 |
-
def create_360_panorama(frames):
|
117 |
-
"""Create an equirectangular panorama with better stitching and wide-angle adjustment"""
|
118 |
try:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
# We'll adjust the output size to account for this
|
124 |
-
vertical_fov = 120 # degrees
|
125 |
-
total_vertical_fov = 180 # full equirectangular height
|
126 |
-
|
127 |
-
# Calculate padding needed
|
128 |
-
padding_ratio = (total_vertical_fov - vertical_fov) / (2 * total_vertical_fov)
|
129 |
|
130 |
-
# Create
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
logger.info("Starting panorama stitching...")
|
135 |
-
status, panorama = stitcher.stitch(frames)
|
136 |
-
|
137 |
-
if status != cv2.Stitcher_OK:
|
138 |
-
raise Exception(f"Stitching failed with status {status}")
|
139 |
-
|
140 |
-
# Calculate target dimensions
|
141 |
-
target_height = 1080
|
142 |
-
target_width = target_height * 2 # 2:1 aspect ratio for equirectangular
|
143 |
-
|
144 |
-
# Resize stitched panorama
|
145 |
-
panorama = cv2.resize(panorama, (target_width, int(target_height * (1 - 2*padding_ratio))))
|
146 |
-
|
147 |
-
# Create final image with padding
|
148 |
-
final_panorama = np.zeros((target_height, target_width, 3), dtype=np.uint8)
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
# Apply slight feathering at the edges to avoid hard transitions
|
157 |
-
feather_size = int(pad_pixels * 0.3)
|
158 |
-
for i in range(feather_size):
|
159 |
-
alpha = i / feather_size
|
160 |
-
# Feather top
|
161 |
-
final_panorama[pad_pixels-feather_size+i, :] = \
|
162 |
-
(panorama[0, :] * alpha).astype(np.uint8)
|
163 |
-
# Feather bottom
|
164 |
-
final_panorama[target_height-pad_pixels+i, :] = \
|
165 |
-
(panorama[-1, :] * (1-alpha)).astype(np.uint8)
|
166 |
-
|
167 |
-
logger.info(f"Created panorama of size {final_panorama.shape} with vertical FOV adjustment")
|
168 |
-
return final_panorama
|
169 |
-
|
170 |
-
except Exception as e:
|
171 |
-
raise Exception(f"360° panorama creation failed: {str(e)}")
|
172 |
-
|
173 |
-
def equirect_to_cubemap(equirect):
|
174 |
-
"""Convert equirectangular image to cubemap"""
|
175 |
-
face_size = equirect.shape[0] // 2
|
176 |
-
cubemap = np.zeros((face_size * 3, face_size * 4, 3), dtype=np.uint8)
|
177 |
-
|
178 |
-
rotations = [
|
179 |
-
(0, 0, 0), # front
|
180 |
-
(0, 90, 0), # right
|
181 |
-
(0, 180, 0), # back
|
182 |
-
(0, 270, 0), # left
|
183 |
-
(-90, 0, 0), # top
|
184 |
-
(90, 0, 0) # bottom
|
185 |
-
]
|
186 |
-
|
187 |
-
for i, rotation in enumerate(rotations):
|
188 |
-
x = (i % 4) * face_size
|
189 |
-
y = (i // 4) * face_size
|
190 |
-
|
191 |
-
R = cv2.Rodrigues(np.array([rotation[0] * np.pi / 180,
|
192 |
-
rotation[1] * np.pi / 180,
|
193 |
-
rotation[2] * np.pi / 180]))[0]
|
194 |
-
|
195 |
-
for u in range(face_size):
|
196 |
-
for v in range(face_size):
|
197 |
-
x_3d = (2 * u / face_size - 1)
|
198 |
-
y_3d = (2 * v / face_size - 1)
|
199 |
-
z_3d = 1.0
|
200 |
-
|
201 |
-
point = R.dot(np.array([x_3d, y_3d, z_3d]))
|
202 |
-
theta = np.arctan2(point[0], point[2])
|
203 |
-
phi = np.arctan2(point[1], np.sqrt(point[0]**2 + point[2]**2))
|
204 |
-
|
205 |
-
u_equi = int((theta + np.pi) * equirect.shape[1] / (2 * np.pi))
|
206 |
-
v_equi = int((phi + np.pi/2) * equirect.shape[0] / np.pi)
|
207 |
-
|
208 |
-
if 0 <= u_equi < equirect.shape[1] and 0 <= v_equi < equirect.shape[0]:
|
209 |
-
cubemap[y+v, x+u] = equirect[v_equi, u_equi]
|
210 |
-
|
211 |
-
return cubemap
|
212 |
-
|
213 |
-
def process_video(video):
|
214 |
-
"""Main processing function for Gradio interface"""
|
215 |
-
try:
|
216 |
-
if video is None:
|
217 |
-
return None, None, "Please upload a video file."
|
218 |
-
|
219 |
-
video_path = video
|
220 |
-
if not os.path.exists(video_path):
|
221 |
-
return None, None, "Error: Video file not found."
|
222 |
-
|
223 |
-
# Log the working directory and file permission
|
224 |
-
logger.info(f"Working directory: {os.getcwd()}")
|
225 |
-
logger.info(f"Video path exists: {os.path.exists(video_path)}")
|
226 |
-
logger.info(f"Video path permissions: {oct(os.stat(video_path).st_mode)[-3:]}")
|
227 |
-
|
228 |
-
# Extract frames
|
229 |
-
frames = extract_frames(video_path, num_frames=24)
|
230 |
-
if not frames:
|
231 |
-
return None, None, "Error: No frames could be extracted from the video."
|
232 |
-
|
233 |
-
# Create panorama
|
234 |
-
equirect = create_360_panorama(frames)
|
235 |
-
logger.info("Created equirectangular panorama")
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
logger.info("Created cubemap")
|
240 |
-
|
241 |
-
# Save paths
|
242 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
243 |
-
equirect_path = f"360_photo_{timestamp}.jpg"
|
244 |
-
cubemap_path = f"cubemap_{timestamp}.jpg"
|
245 |
-
|
246 |
-
# Save equirectangular image
|
247 |
-
logger.info("Saving equirectangular image...")
|
248 |
-
cv2.imwrite(equirect_path, equirect)
|
249 |
-
|
250 |
-
# Add metadata to equirectangular image
|
251 |
-
height, width = equirect.shape[:2]
|
252 |
-
write_xmp_to_jpg(equirect_path, equirect_path, width, height)
|
253 |
-
logger.info("Added 360 metadata to equirectangular image")
|
254 |
-
|
255 |
-
# Save cubemap
|
256 |
-
logger.info("Saving cubemap...")
|
257 |
-
cv2.imwrite(cubemap_path, cubemap)
|
258 |
-
|
259 |
-
return equirect_path, cubemap_path, "Processing completed successfully!"
|
260 |
-
|
261 |
except Exception as e:
|
262 |
-
|
263 |
-
return None, None, f"Error during processing: {str(e)}"
|
264 |
|
265 |
# Create Gradio interface
|
266 |
iface = gr.Interface(
|
267 |
-
fn=
|
268 |
-
inputs=gr.
|
269 |
-
outputs=
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
1. 360° Photo with proper metadata (can be viewed in Google Photos, Facebook, etc.)
|
278 |
-
2. Cubemap view
|
279 |
-
|
280 |
-
Tips for best results:
|
281 |
-
- Keep video length under 30 seconds
|
282 |
-
- Ensure steady camera motion
|
283 |
-
- Video should complete a full 360° rotation
|
284 |
-
- Maintain consistent camera height
|
285 |
-
- Good lighting conditions help with stitching
|
286 |
-
""",
|
287 |
-
flagging_mode="never"
|
288 |
)
|
289 |
|
290 |
-
# Launch
|
291 |
-
|
292 |
-
iface.queue().launch(
|
293 |
-
server_name="0.0.0.0",
|
294 |
-
server_port=7860
|
295 |
-
)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
import os
|
4 |
from datetime import datetime
|
5 |
import struct
|
6 |
|
|
|
|
|
|
|
|
|
7 |
def create_xmp_block(width, height):
|
8 |
"""Create XMP metadata block following ExifTool's exact format."""
|
9 |
xmp = (
|
|
|
59 |
with open(output_path, 'wb') as f:
|
60 |
f.write(output)
|
61 |
|
62 |
+
def add_360_metadata(input_image):
|
63 |
+
"""Add 360 photo metadata to an image file."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
+
# Open and verify the image
|
66 |
+
img = Image.open(input_image)
|
67 |
+
if img.width != 2 * img.height:
|
68 |
+
raise gr.Error("Image must have 2:1 aspect ratio for equirectangular projection")
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Create output filename
|
71 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
72 |
+
output_filename = f"360_photo_{timestamp}.jpg"
|
73 |
+
output_path = os.path.join("/tmp", output_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# First save as high-quality JPEG
|
76 |
+
img.save(output_path, "JPEG", quality=95)
|
77 |
|
78 |
+
# Then inject XMP metadata directly into JPEG file
|
79 |
+
write_xmp_to_jpg(output_path, output_path, img.width, img.height)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
return output_path
|
82 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
except Exception as e:
|
84 |
+
raise gr.Error(f"Error processing image: {str(e)}")
|
|
|
85 |
|
86 |
# Create Gradio interface
|
87 |
iface = gr.Interface(
|
88 |
+
fn=add_360_metadata,
|
89 |
+
inputs=gr.Image(type="filepath", label="Upload 360° Photo"),
|
90 |
+
outputs=gr.Image(type="filepath", label="360° Photo with Metadata"),
|
91 |
+
title="360° Photo Metadata Adder",
|
92 |
+
description=(
|
93 |
+
"Upload an equirectangular 360° photo to add metadata for Google Photos and other 360° viewers.\n"
|
94 |
+
"Important: Image must have 2:1 aspect ratio (width = 2 × height)."
|
95 |
+
),
|
96 |
+
examples=[],
|
97 |
+
cache_examples=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
100 |
+
# Launch the interface
|
101 |
+
iface.launch()
|
|
|
|
|
|
|
|