nakamura196's picture
feat: update description
1907e78
raw
history blame
8.01 kB
import gradio as gr
import numpy as np
from PIL import Image
import os
from rtmdet import RTMDet
from parseq import PARSEQ
from yaml import safe_load
from ndl_parser import convert_to_xml_string3
from concurrent.futures import ThreadPoolExecutor
import xml.etree.ElementTree as ET
from reading_order.xy_cut.eval import eval_xml
from xml.dom import minidom
import re
# Model Heading and Description
model_heading = "NDL Kotenseki OCR-Lite Gradio App"
description = """
Upload an image or click an example image to use.
Examples:
1. 『竹取物語』上, 江戸前期. https://dl.ndl.go.jp/pid/1287221/1/2
2. 曲亭馬琴 作 ほか『人間万事賽翁馬 3巻』, 鶴喜, 寛政12. https://dl.ndl.go.jp/pid/10301438/1/17
"""
article = "This application is powered by NDL Kotenseki OCR-Lite. For more details, please visit the official repository: [NDL Kotenseki OCR-Lite GitHub Repository](https://github.com/ndl-lab/ndlkotenocr-lite)."
# <p style='text-align: center'><a href=\"https://github.com/ndl-lab/ndlkotenocr-lite\">https://github.com/ndl-lab/ndlkotenocr-lite</a>.</p>
image_path = [
['samples/digidepo_1287221_00000002.jpg'],
['samples/digidepo_10301438_0017.jpg']
]
# Functions to load models
def get_detector(weights_path, classes_path, device='cpu'):
assert os.path.isfile(weights_path), f"Weight file not found: {weights_path}"
assert os.path.isfile(classes_path), f"Classes file not found: {classes_path}"
return RTMDet(model_path=weights_path,
class_mapping_path=classes_path,
score_threshold=0.3,
conf_thresold=0.3,
iou_threshold=0.3,
device=device)
def get_recognizer(weights_path, classes_path, device='cpu'):
assert os.path.isfile(weights_path), f"Weight file not found: {weights_path}"
assert os.path.isfile(classes_path), f"Classes file not found: {classes_path}"
with open(classes_path, encoding="utf-8") as f:
charlist = list(safe_load(f)["model"]["charset_train"])
return PARSEQ(model_path=weights_path, charlist=charlist, device=device)
def create_txt(recognizer, root, img):
alltextlist = []
targetdflist=[]
tatelinecnt=0
alllinecnt=0
with ThreadPoolExecutor(max_workers=4, thread_name_prefix="thread") as executor:
for lineobj in root.findall(".//LINE"):
xmin=int(lineobj.get("X"))
ymin=int(lineobj.get("Y"))
line_w=int(lineobj.get("WIDTH"))
line_h=int(lineobj.get("HEIGHT"))
if line_h>line_w:
tatelinecnt+=1
alllinecnt+=1
lineimg=img[ymin:ymin+line_h,xmin:xmin+line_w,:]
targetdflist.append(lineimg)
resultlines = executor.map(recognizer.read, targetdflist)
resultlines=list(resultlines)
alltextlist.append("\n".join(resultlines))
alltextstr=""
for text in alltextlist:
alltextstr+=text+"\n"
return alltextstr
def create_xml(detections,classeslist,img_w,img_h,imgname, recognizer, img):
resultobj=[dict(),dict()]
resultobj[0][0]=list()
for i in range(16):
resultobj[1][i]=[]
for det in detections:
xmin,ymin,xmax,ymax=det["box"]
conf=det["confidence"]
if det["class_index"]==0:
resultobj[0][0].append([xmin,ymin,xmax,ymax])
resultobj[1][det["class_index"]].append([xmin,ymin,xmax,ymax,conf])
xmlstr=convert_to_xml_string3(img_w, img_h, imgname, classeslist, resultobj,score_thr = 0.3,min_bbox_size= 5,use_block_ad= False)
xmlstr="<OCRDATASET>"+xmlstr+"</OCRDATASET>"
root = ET.fromstring(xmlstr)
eval_xml(root, logger=None)
targetdflist=[]
tatelinecnt=0
alllinecnt=0
with ThreadPoolExecutor(max_workers=4, thread_name_prefix="thread") as executor:
for lineobj in root.findall(".//LINE"):
xmin=int(lineobj.get("X"))
ymin=int(lineobj.get("Y"))
line_w=int(lineobj.get("WIDTH"))
line_h=int(lineobj.get("HEIGHT"))
if line_h>line_w:
tatelinecnt+=1
alllinecnt+=1
lineimg=img[ymin:ymin+line_h,xmin:xmin+line_w,:]
targetdflist.append(lineimg)
resultlines = executor.map(recognizer.read, targetdflist)
resultlines=list(resultlines)
for idx,lineobj in enumerate(root.findall(".//LINE")):
lineobj.set("STRING",resultlines[idx])
return root
def create_txt(root):
alltextlist=[]
for lineobj in root.findall(".//LINE"):
alltextlist.append(lineobj.get("STRING"))
return "\n".join(alltextlist)
def create_xmlstr(root):
rough_string = ET.tostring(root, 'utf-8')
reparsed = minidom.parseString(rough_string)
pretty = re.sub(r"[\t ]+\n", "", reparsed.toprettyxml(indent="\t")) # インデント後の不要な改行を削除
pretty = pretty.replace(">\n\n\t<", ">\n\t<") # 不要な空行を削除
pretty = re.sub(r"\n\s*\n", "\n", pretty) # 連続した改行(空白行を含む)を単一の改行に置換
return pretty
def create_json(root):
resjsonarray=[]
img_w=int(root.find("PAGE").get("WIDTH"))
img_h=int(root.find("PAGE").get("HEIGHT"))
inputpath=root.find("PAGE").get("IMAGENAME")
for idx,lineobj in enumerate(root.findall(".//LINE")):
text = lineobj.get("STRING")
xmin=int(lineobj.get("X"))
ymin=int(lineobj.get("Y"))
line_w=int(lineobj.get("WIDTH"))
line_h=int(lineobj.get("HEIGHT"))
try:
conf=float(lineobj.get("CONF"))
except:
conf=0
jsonobj={"boundingBox": [[xmin,ymin],[xmin,ymin+line_h],[xmin+line_w,ymin],[xmin+line_w,ymin+line_h]],
"id": idx,"isVertical": "true","text": text,"isTextline": "true","confidence": conf}
resjsonarray.append(jsonobj)
alljsonobj={
"contents":[resjsonarray],
"imginfo": {
"img_width": img_w,
"img_height": img_h,
"img_path":inputpath,
"img_name":os.path.basename(inputpath)
}
}
return alljsonobj
# Inference Function
def process(image_path: str):
try:
# Load the models
detector = get_detector(
weights_path="model/rtmdet-s-1280x1280.onnx",
classes_path="config/ndl.yaml",
device="cpu"
)
recognizer = get_recognizer(
weights_path="model/parseq-ndl-32x384-tiny-10.onnx",
classes_path="config/NDLmoji.yaml",
device="cpu"
)
# Load image
pil_image = Image.open(image_path).convert('RGB')
npimg = np.array(pil_image)
# Object detection
detections = detector.detect(npimg)
classeslist=list(detector.classes.values())
img_h,img_w=npimg.shape[:2]
imgname=os.path.basename(image_path)
root = create_xml(detections, classeslist, img_w, img_h, imgname, recognizer, npimg)
alltext = create_txt(root)
result_json = create_json(root)
pil_image =detector.draw_detections(npimg, detections=detections)
return pil_image, alltext, create_xmlstr(root), result_json
except Exception as e:
return [
Image.fromarray(np.zeros((100, 100), dtype=np.uint8)),
"Error",
"Error",
{}
]
# Gradio Inputs and Outputs
inputs_image = gr.Image(type="filepath", label="Input Image")
outputs_image = [
gr.Image(type="pil", label="Output Image"),
gr.TextArea(label="Output Text"),
gr.TextArea(label="Output XML"),
gr.JSON(label="Output JSON")
]
# Gradio Interface
demo = gr.Interface(
fn=process,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
article=article,
cache_examples=False,
# flagging_mode="never"
allow_flagging="never"
)
demo.launch(share=False, server_name="0.0.0.0")