3v324v23 commited on
Commit
2f51262
·
1 Parent(s): 1d1b170

feat: initial commit

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+ import gradio as gr
4
+ import timm
5
+
6
+ # Read the categories
7
+ with open("labels.txt", "r") as f:
8
+ categories = [s.strip() for s in f.readlines()]
9
+
10
+ model_ft = timm.create_model('vit_base_patch16_224_in21k', pretrained=True, num_classes=len(categories))
11
+ model_path = 'best_cpu.pt'
12
+ model_ft.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
13
+ model_ft.eval()
14
+
15
+
16
+ # Download an example image from the pytorch website
17
+ # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0001.tif/full/,400/0/default.jpg", "examples/other.jpg")
18
+ # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0002.tif/full/,400/0/default.jpg", "examples/front.jpg")
19
+ # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0003.tif/full/,400/0/default.jpg", "examples/page.jpg")
20
+ # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0009.tif/full/,400/0/default.jpg", "examples/page2.jpg")
21
+ # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0032.tif/full/,400/0/default.jpg", "examples/back.jpg")
22
+
23
+
24
+ def inference(input_image):
25
+ preprocess = transforms.Compose([
26
+ transforms.Resize(224),
27
+ transforms.CenterCrop(224),
28
+ transforms.ToTensor(),
29
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
30
+ ])
31
+ input_tensor = preprocess(input_image)
32
+ input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
33
+
34
+ # move the input and model to GPU for speed if available
35
+ if torch.cuda.is_available():
36
+ input_batch = input_batch.to('cuda')
37
+ model_ft.to('cuda')
38
+
39
+ with torch.no_grad():
40
+ output = model_ft(input_batch)
41
+ # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
42
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
43
+
44
+
45
+ # Show top categories per image
46
+ top5_prob, top5_catid = torch.topk(probabilities, len(categories))
47
+ result = {}
48
+ for i in range(top5_prob.size(0)):
49
+ result[categories[top5_catid[i]]] = top5_prob[i].item()
50
+ return result
51
+
52
+ inputs = gr.inputs.Image(type='pil')
53
+ outputs = gr.outputs.Label(type="confidences",num_top_classes=len(categories))
54
+
55
+ title = "表紙・裏表紙・その他のページの分類"
56
+ description = "Vision Transformerを用いた表紙・裏表紙・その他のページの分類モデルです。"
57
+
58
+ article = "<p style='text-align: center'>次のデータセットを使用しました。<a href='' target='_blank'>あああ</a></p>"
59
+
60
+ examples = [
61
+ ['examples/other.jpg'],
62
+ ['examples/front.jpg'],
63
+ ["examples/page.jpg"],
64
+ ["examples/page2.jpg"],
65
+ ["examples/back.jpg"]
66
+ ]
67
+
68
+ gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()
best_cpu.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3ab2e5acd80138398b765a0ab0f68cdda324e25fb311af590c6c21fe788c3b3
3
+ size 343257169
examples/back.jpg ADDED
examples/front.jpg ADDED
examples/other.jpg ADDED
examples/page.jpg ADDED
examples/page2.jpg ADDED
labels.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ back
2
+ front
3
+ page