import gradio as gr
from PIL import Image
from io import BytesIO
import base64
import requests
from io import BytesIO


from collections import Counter

from PIL import Image

import numpy as np

import matplotlib.pyplot as plt


def compute_fft_cross_correlation(img1, img2):

    fft1 = np.fft.fft2(img1)

    fft2 = np.fft.fft2(np.rot90(img2, 2), s=img1.shape)

    result = np.fft.ifft2(fft1 * fft2).real

    return result



def compute_offsets(reference, images, window_size):

    reference_gray = np.array(reference.convert('L'))

    offsets = []

    for img in images:

        img_gray = np.array(img.convert('L'))

        correlation = compute_fft_cross_correlation(reference_gray, img_gray)

        # Roll the correlation by half the width and height
        height, width = correlation.shape
        correlation = np.roll(correlation, height // 2, axis=0)
        correlation = np.roll(correlation, width // 2, axis=1)


        # Find the peak in the central region of the correlation
        center_x, center_y = height // 2, width // 2
        start_x, start_y = center_x - window_size // 2, center_y - window_size // 2
        end_x, end_y = start_x + window_size, start_y + window_size

        #make sure starts and ends are in the range(0,height) and (0,width)
        start_x = max(start_x,0)
        start_y = max(start_y,0)
        end_x = min(end_x,height-1)
        end_y = min(end_y,width-1)


        window_size_x = end_x - start_x
        window_size_y = end_y - start_y


        peak_x, peak_y = np.unravel_index(np.argmax(correlation[start_x:end_x, start_y:end_y]), (window_size_x, window_size_y))

        
        
        
        '''
        #plot the correlation
        fig, axs = plt.subplots(1, 5, figsize=(10, 5))
        axs[0].imshow(reference_gray, cmap='gray')
        axs[0].set_title('Reference')
        axs[1].imshow(img_gray, cmap='gray')
        axs[1].set_title('Image')
        axs[2].imshow(correlation, cmap='hot', interpolation='nearest', extent=[-window_size, window_size, -window_size, window_size])
        axs[2].set_title('Correlation')
        axs[3].imshow(correlation, cmap='hot', interpolation='nearest')
        axs[3].set_title('Correlation full')
        axs[4].imshow(correlation[start_x:end_x, start_y:end_y], cmap='hot', interpolation='nearest')
        axs[4].set_title('Correlation cropped')
        plt.show()


        print("what?",np.argmax(correlation[start_x:end_x, start_y:end_y]))

        print(peak_x, peak_y,start_x,end_x,start_y,end_y,center_x,center_y)    
        '''

        
        # Compute the offset in the range [-window_size, window_size]
        peak_x += start_x - center_x + 1
        peak_y += start_y - center_y + 1

        #signs are wrong
        #peak_x = -peak_x
        #peak_y = -peak_y

        #print(peak_x, peak_y)

        # Compute the offset in the range [-window_size, window_size]
        if peak_x > correlation.shape[0] // 2:
            peak_x -= correlation.shape[0]
        if peak_y > correlation.shape[1] // 2:
            peak_y -= correlation.shape[1]

        if peak_x >= 0:
            peak_x = min(peak_x, window_size)
        else:
            peak_x = max(peak_x, -window_size)

        if peak_y >= 0:
            peak_y = min(peak_y, window_size)
        else:
            peak_y = max(peak_y, -window_size)

        offsets.append((peak_x, peak_y))

    return offsets


def find_most_common_color(image):

    pixels = list(image.getdata())

    color_counter = Counter(pixels)

    return color_counter.most_common(1)[0][0]



def slice_frames_final(original, centers, frame_width, frame_height, background_color=(255, 255, 0, 255)):

    sliced_frames = []

    original_width, original_height = original.size

    for center_x, center_y in centers:

        left = center_x - frame_width // 2

        upper = center_y - frame_height // 2

        right = left + frame_width

        lower = upper + frame_height

        new_frame = Image.new("RGBA", (frame_width, frame_height), background_color)

        paste_x = max(0, -left)

        paste_y = max(0, -upper)

        cropped_frame = original.crop((max(0, left), max(0, upper), min(original_width, right), min(original_height, lower)))

        new_frame.paste(cropped_frame, (paste_x, paste_y))

        sliced_frames.append(new_frame)

    return sliced_frames



def create_aligned_gif(original_image, columns_per_row, window_size=200, duration=100,output_gif_path = 'output.gif'):

    
    original_width, original_height = original_image.size

    rows = len(columns_per_row)

    total_frames = sum(columns_per_row)

    background_color = find_most_common_color(original_image)

    frame_height = original_height // rows

    min_frame_width = min([original_width // cols for cols in columns_per_row])

    frames = []

    for i in range(rows):

        frame_width = original_width // columns_per_row[i]

        for j in range(columns_per_row[i]):

            left = j * frame_width + (frame_width - min_frame_width) // 2

            upper = i * frame_height

            right = left + min_frame_width

            lower = upper + frame_height

            frame = original_image.crop((left, upper, right, lower))

            frames.append(frame)

    fft_offsets = compute_offsets(frames[0], frames, window_size=window_size)

    center_coordinates = []

    frame_idx = 0

    for i in range(rows):

        frame_width = original_width // columns_per_row[i]

        for j in range(columns_per_row[i]):

            offset_y,offset_x = fft_offsets[frame_idx]

            center_x = j * frame_width + (frame_width) // 2 - offset_x

            center_y = frame_height * i + frame_height//2 - offset_y

            center_coordinates.append((center_x, center_y))

            frame_idx += 1

    sliced_frames = slice_frames_final(original_image, center_coordinates, min_frame_width, frame_height, background_color=background_color)

    

    sliced_frames[0].save(output_gif_path, save_all=True, append_images=sliced_frames[1:], loop=0, duration=duration)

    '''
    #display frames
    for frame in sliced_frames:
        plt.figure()
        plt.imshow(frame)
    '''
    
    
    return output_gif_path

def wrapper_func(img, columns_per_row_str,duration):
    #img = Image.open(BytesIO(file))

    #img = Image.fromarray(img_arr)

    columns_per_row = [int(x.strip()) for x in columns_per_row_str.split(',')]
    output_gif_path = 'output.gif'

    create_aligned_gif(img, columns_per_row,duration=duration)
    #with open(output_gif_path, "rb") as f:
        #return base64.b64encode(f.read()).decode()
    #    Image.open(output_gif_path)

    return output_gif_path


# Example image in the form of a NumPy array
#example_image = Image.open("https://raw.githubusercontent.com/nagolinc/notebooks/main/ss5.png")

url = "https://raw.githubusercontent.com/nagolinc/notebooks/main/ss5.png"
response = requests.get(url)
example_image = Image.open(BytesIO(response.content))

# Example for "Columns per Row" as a string
example_columns_per_row = "5,5,5"



iface = gr.Interface(
    fn=wrapper_func,
    inputs=[
        gr.components.Image(label="Upload Spritesheet",type='pil'),
        gr.components.Textbox(label="Columns per Row", value="3,4,3"),
        gr.components.Slider(minimum=10, maximum=1000, step=10, value=100, label="Duration of each frame (ms)"),
    ],
    outputs=gr.components.Image(type="filepath", label="Generated GIF"),
    examples=[[example_image, example_columns_per_row,100]],  # Adding examples here
)

iface.launch()