Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +134 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline, AutoTokenizer
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
|
7 |
+
class AbuseHateProfanityDetector:
|
8 |
+
def __init__(self):
|
9 |
+
# Device configuration (CPU or GPU)
|
10 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# Initialize detection models
|
13 |
+
self.Abuse_detector = pipeline("text-classification", model="Hate-speech-CNERG/english-abusive-MuRIL", device=self.device)
|
14 |
+
self.Hate_speech_detector = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-hate-latest", device=self.device)
|
15 |
+
self.Profanity_detector = pipeline("text-classification", model="tarekziade/pardonmyai", device=self.device)
|
16 |
+
|
17 |
+
# Load tokenizers
|
18 |
+
self.abuse_tokenizer = AutoTokenizer.from_pretrained('Hate-speech-CNERG/english-abusive-MuRIL')
|
19 |
+
self.hate_speech_tokenizer = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-hate-latest')
|
20 |
+
self.profanity_tokenizer = AutoTokenizer.from_pretrained('tarekziade/pardonmyai')
|
21 |
+
|
22 |
+
# Define max token sizes for each model
|
23 |
+
self.Abuse_max_context_size = 512
|
24 |
+
self.HateSpeech_max_context_size = 512
|
25 |
+
self.Profanity_max_context_size = 512
|
26 |
+
|
27 |
+
def preprocess_and_clean_text(self, text: str) -> str:
|
28 |
+
"""
|
29 |
+
Preprocesses and cleans the text.
|
30 |
+
"""
|
31 |
+
stammering_pattern = r'\b(\w+)\s*[,;]+\s*(\1\b\s*[,;]*)+'
|
32 |
+
passage_without_stammering = re.sub(stammering_pattern, r'\1', text)
|
33 |
+
passage_without_um = re.sub(r'\bum\b', ' ', passage_without_stammering)
|
34 |
+
modified_text = re.sub(r'\s*,+\s*', ', ', passage_without_um)
|
35 |
+
processed_text = re.sub(r'\s+([^\w\s])', r'\1', modified_text)
|
36 |
+
processed_text = re.sub(r'\s+', ' ', processed_text)
|
37 |
+
pattern = r'(\.\s*)+'
|
38 |
+
cleaned_text = re.sub(pattern, '.', processed_text)
|
39 |
+
return cleaned_text.strip()
|
40 |
+
|
41 |
+
def token_length(self, text, tokenizer):
|
42 |
+
"""
|
43 |
+
Computes the token length of a text.
|
44 |
+
"""
|
45 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
46 |
+
return len(tokens)
|
47 |
+
|
48 |
+
def create_token_length_wrapper(self, tokenizer):
|
49 |
+
"""
|
50 |
+
Creates a closure to calculate token length using the tokenizer.
|
51 |
+
"""
|
52 |
+
def token_length_wrapper(text):
|
53 |
+
return self.token_length(text, tokenizer)
|
54 |
+
return token_length_wrapper
|
55 |
+
|
56 |
+
def chunk_text(self, text, tokenizer, max_length):
|
57 |
+
"""
|
58 |
+
Chunks the input text based on the max token length and cleans the text.
|
59 |
+
"""
|
60 |
+
text = self.preprocess_and_clean_text(text)
|
61 |
+
token_length_wrapper = self.create_token_length_wrapper(tokenizer)
|
62 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=max_length - 2, length_function=token_length_wrapper)
|
63 |
+
chunks = text_splitter.split_text(text)
|
64 |
+
return chunks
|
65 |
+
|
66 |
+
def classify_text(self, text: str):
|
67 |
+
"""
|
68 |
+
Classifies text for abuse, hate speech, and profanity using the respective models.
|
69 |
+
"""
|
70 |
+
# Split text into chunks for each classification model
|
71 |
+
abuse_chunks = self.chunk_text(text, self.abuse_tokenizer, self.Abuse_max_context_size)
|
72 |
+
hate_speech_chunks = self.chunk_text(text, self.hate_speech_tokenizer, self.HateSpeech_max_context_size)
|
73 |
+
profanity_chunks = self.chunk_text(text, self.profanity_tokenizer, self.Profanity_max_context_size)
|
74 |
+
|
75 |
+
# Initialize flags
|
76 |
+
abusive_flag = False
|
77 |
+
hatespeech_flag = False
|
78 |
+
profanity_flag = False
|
79 |
+
|
80 |
+
# Detect Abuse
|
81 |
+
for chunk in abuse_chunks:
|
82 |
+
result = self.Abuse_detector(chunk)
|
83 |
+
if result[0]['label'] == 'LABEL_1': # Assuming LABEL_1 is abusive content
|
84 |
+
abusive_flag = True
|
85 |
+
|
86 |
+
# Detect Hate Speech
|
87 |
+
for chunk in hate_speech_chunks:
|
88 |
+
result = self.Hate_speech_detector(chunk)
|
89 |
+
if result[0]['label'] == 'HATE': # Assuming HATE label indicates hate speech
|
90 |
+
hatespeech_flag = True
|
91 |
+
|
92 |
+
# Detect Profanity
|
93 |
+
for chunk in profanity_chunks:
|
94 |
+
result = self.Profanity_detector(chunk)
|
95 |
+
if result[0]['label'] == 'OFFENSIVE': # Assuming OFFENSIVE label indicates profanity
|
96 |
+
profanity_flag = True
|
97 |
+
|
98 |
+
# Return classification results
|
99 |
+
return {
|
100 |
+
"abusive_flag": abusive_flag,
|
101 |
+
"hatespeech_flag": hatespeech_flag,
|
102 |
+
"profanity_flag": profanity_flag
|
103 |
+
}
|
104 |
+
|
105 |
+
def extract_speaker_text(self, transcript, client_label="Client", care_provider_label="Care Provider"):
|
106 |
+
"""
|
107 |
+
Extracts text spoken by the client and the care provider from the transcript.
|
108 |
+
"""
|
109 |
+
client_text = []
|
110 |
+
care_provider_text = []
|
111 |
+
|
112 |
+
lines = transcript.split("\n")
|
113 |
+
for line in lines:
|
114 |
+
if line.startswith(client_label + ":"):
|
115 |
+
client_text.append(line[len(client_label) + 1:].strip())
|
116 |
+
elif line.startswith(care_provider_label + ":"):
|
117 |
+
care_provider_text.append(line[len(care_provider_label) + 1:].strip())
|
118 |
+
|
119 |
+
return " ".join(client_text), " ".join(care_provider_text)
|
120 |
+
|
121 |
+
# Gradio interface for the web app
|
122 |
+
detector = AbuseHateProfanityDetector()
|
123 |
+
|
124 |
+
interface = gr.Interface(
|
125 |
+
fn=detector.classify_text,
|
126 |
+
inputs=[gr.Textbox(label="Enter text")],
|
127 |
+
outputs="json",
|
128 |
+
title="Abuse, Hate Speech, and Profanity Detection",
|
129 |
+
description="Enter text to detect whether it contains abusive, hateful, or offensive content."
|
130 |
+
)
|
131 |
+
|
132 |
+
# Launch the Gradio app
|
133 |
+
if __name__ == "__main__":
|
134 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
re
|
2 |
+
mypy
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
langchain
|
6 |
+
transformers
|