nabarun xinyu1205 commited on
Commit
c49733b
·
0 Parent(s):

Duplicate from xinyu1205/Recognize_Anything-Tag2Text

Browse files

Co-authored-by: Xinyu Huang <[email protected]>

Files changed (44) hide show
  1. .gitattributes +39 -0
  2. README.md +189 -0
  3. app.py +209 -0
  4. configs/med_config.json +21 -0
  5. configs/q2l_config.json +22 -0
  6. configs/swin/config_swinB_224.json +10 -0
  7. configs/swin/config_swinB_384.json +10 -0
  8. configs/swin/config_swinB_480.json +9 -0
  9. configs/swin/config_swinB_576.json +9 -0
  10. configs/swin/config_swinB_608.json +9 -0
  11. configs/swin/config_swinL_384.json +9 -0
  12. configs/tag2text_caption.yaml +33 -0
  13. data/__pycache__/tag_class.cpython-37.pyc +0 -0
  14. data/ram_tag_list.txt +4585 -0
  15. data/ram_tag_list_chinese.txt +4585 -0
  16. data/ram_tag_list_threshold.py +4585 -0
  17. data/tag_list.txt +3429 -0
  18. data/textual_label_embedding.pth +3 -0
  19. images/1641173_2291260800.jpg +3 -0
  20. images/2800737_834897251.jpg +0 -0
  21. images/64891_194270823.jpg +0 -0
  22. images/COCO_val2014_000000483108.jpg +0 -0
  23. images/COCO_val2014_000000551338.jpg +0 -0
  24. images/bdf391a6f4b1840a.jpg +0 -0
  25. images/demo1.jpg +3 -0
  26. images/demo2.jpg +3 -0
  27. images/demo3.jpg +3 -0
  28. images/demo4.jpg +0 -0
  29. images/localization_and_recognition.jpg +0 -0
  30. images/ram_grounded_sam.jpg +0 -0
  31. images/tag2text_framework.png +0 -0
  32. images/tag2text_grounded_sam.jpg +0 -0
  33. models/__pycache__/med.cpython-37.pyc +0 -0
  34. models/__pycache__/swin_transformer.cpython-37.pyc +0 -0
  35. models/__pycache__/tag2text.cpython-37.pyc +0 -0
  36. models/__pycache__/vit.cpython-37.pyc +0 -0
  37. models/bert.py +1035 -0
  38. models/swin_transformer.py +654 -0
  39. models/tag2text.py +487 -0
  40. models/utils.py +278 -0
  41. models/vit.py +305 -0
  42. ram_swin_large_14m.pth +3 -0
  43. requirements.txt +8 -0
  44. tag2text_swin_14m.pth +3 -0
.gitattributes ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ starrynight.jpeg filter=lfs diff=lfs merge=lfs -text
36
+ images/1641173_2291260800.jpg filter=lfs diff=lfs merge=lfs -text
37
+ images/demo1.jpg filter=lfs diff=lfs merge=lfs -text
38
+ images/demo2.jpg filter=lfs diff=lfs merge=lfs -text
39
+ images/demo3.jpg filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ title: RAM_Tag2Text
4
+ sdk: gradio
5
+ emoji: 🐠
6
+ colorFrom: blue
7
+ colorTo: yellow
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: xinyu1205/Recognize_Anything-Tag2Text
11
+ ---
12
+
13
+
14
+ # :label: Recognize Anything: A Strong Image Tagging Model & Tag2Text: Guiding Vision-Language Model via Image Tagging
15
+
16
+ Official PyTorch Implementation of the <a href="https://recognize-anything.github.io/">Recognize Anything Model (RAM)</a> and the <a href="https://tag2text.github.io/">Tag2Text Model</a>.
17
+
18
+ - RAM is a strong image tagging model, which can recognize any common category with high accuracy.
19
+ - Tag2Text is an efficient and controllable vision-language model with tagging guidance.
20
+
21
+
22
+ When combined with localization models ([Grounded-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything)), Tag2Text and RAM form a strong and general pipeline for visual semantic analysis.
23
+
24
+ ![](./images/ram_grounded_sam.jpg)
25
+
26
+ ## :sun_with_face: Helpful Tutorial
27
+
28
+
29
+ - :apple: [[Access RAM Homepage](https://recognize-anything.github.io/)]
30
+ - :grapes: [[Access Tag2Text Homepage](https://tag2text.github.io/)]
31
+ - :sunflower: [[Read RAM arXiv Paper](https://arxiv.org/abs/2306.03514)]
32
+ - :rose: [[Read Tag2Text arXiv Paper](https://arxiv.org/abs/2303.05657)]
33
+ - :mushroom: [[Try our Tag2Text web Demo! 🤗](https://huggingface.co/spaces/xinyu1205/Tag2Text)]
34
+
35
+
36
+
37
+ ## :bulb: Highlight
38
+ **Recognition and localization are two foundation computer vision tasks.**
39
+ - **The Segment Anything Model (SAM)** excels in **localization capabilities**, while it falls short when it comes to **recognition tasks**.
40
+ - **The Recognize Anything Model (RAM) and Tag2Text** exhibits **exceptional recognition abilities**, in terms of **both accuracy and scope**.
41
+
42
+ <p align="center">
43
+ <table class="tg">
44
+ <tr>
45
+ <td class="tg-c3ow"><img src="images/localization_and_recognition.jpg" align="center" width="800" ></td>
46
+ </tr>
47
+ </table>
48
+ </p>
49
+
50
+
51
+ <details close>
52
+ <summary><font size="4">
53
+ Tag2Text for Vision-Language Tasks.
54
+ </font></summary>
55
+
56
+ - **Tagging.** Without manual annotations, Tag2Text achieves **superior** image tag recognition ability of [**3,429**](./data/tag_list.txt) commonly human-used categories.
57
+ - **Efficient.** Tagging guidance effectively enhances the performance of vision-language models on both **generation-based** and **alignment-based** tasks.
58
+ - **Controllable.** Tag2Text permits users to input **desired tags**, providing the flexibility in composing corresponding texts based on the input tags.
59
+
60
+
61
+ <p align="center">
62
+ <table class="tg">
63
+ <tr>
64
+ <td class="tg-c3ow"><img src="images/tag2text_framework.png" align="center" width="800" ></td>
65
+ </tr>
66
+ </table>
67
+ </p>
68
+ </details>
69
+
70
+
71
+ <details close>
72
+ <summary><font size="4">
73
+ Advancements of RAM on Tag2Text.
74
+ </font></summary>
75
+
76
+ - **Accuracy.** RAM utilizes a data engine to generate additional annotations and clean incorrect ones, resulting higher accuracy compared to Tag2Text.
77
+ - **Scope.** Tag2Text recognizes 3,400+ fixed tags. RAM upgrades the number to 6,400+, covering more valuable categories. With open-set capability, RAM is feasible to recognize any common category.
78
+
79
+
80
+ </details>
81
+
82
+
83
+ ## :sparkles: Highlight Projects with other Models
84
+ - [Tag2Text/RAM with Grounded-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) is trong and general pipeline for visual semantic analysis, which can automatically **recognize**, detect, and segment for an image!
85
+ - [Ask-Anything](https://github.com/OpenGVLab/Ask-Anything) is a multifunctional video question answering tool. Tag2Text provides powerful tagging and captioning capabilities as a fundamental component.
86
+ - [Prompt-can-anything](https://github.com/positive666/Prompt-Can-Anything) is a gradio web library that integrates SOTA multimodal large models, including Tag2text as the core model for graphic understanding
87
+
88
+
89
+
90
+
91
+ ## :fire: News
92
+
93
+ - **`2023/06/07`**: We release the [Recognize Anything Model (RAM)](https://recognize-anything.github.io/), a strong image tagging model!
94
+ - **`2023/06/05`**: Tag2Text is combined with [Prompt-can-anything](https://github.com/OpenGVLab/Ask-Anything).
95
+ - **`2023/05/20`**: Tag2Text is combined with [VideoChat](https://github.com/OpenGVLab/Ask-Anything).
96
+ - **`2023/04/20`**: We marry Tag2Text with with [Grounded-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything).
97
+ - **`2023/04/10`**: Code and checkpoint is available Now!
98
+ - **`2023/03/14`**: [Tag2Text web demo 🤗](https://huggingface.co/spaces/xinyu1205/Tag2Text) is available on Hugging Face Space!
99
+
100
+
101
+
102
+
103
+
104
+
105
+ ## :writing_hand: TODO
106
+
107
+ - [x] Release Tag2Text demo.
108
+ - [x] Release checkpoints.
109
+ - [x] Release inference code.
110
+ - [ ] Release RAM demo and checkpoints (until June 14th at the latest).
111
+ - [ ] Release training codes (until August 1st at the latest).
112
+ - [ ] Release training datasets (until August 1st at the latest).
113
+
114
+
115
+
116
+ ## :toolbox: Checkpoints
117
+
118
+ <!-- insert a table -->
119
+ <table>
120
+ <thead>
121
+ <tr style="text-align: right;">
122
+ <th></th>
123
+ <th>name</th>
124
+ <th>backbone</th>
125
+ <th>Data</th>
126
+ <th>Illustration</th>
127
+ <th>Checkpoint</th>
128
+ </tr>
129
+ </thead>
130
+ <tbody>
131
+ <tr>
132
+ <th>1</th>
133
+ <td>Tag2Text-Swin</td>
134
+ <td>Swin-Base</td>
135
+ <td>COCO, VG, SBU, CC-3M, CC-12M</td>
136
+ <td>Demo version with comprehensive captions.</td>
137
+ <td><a href="https://huggingface.co/spaces/xinyu1205/Tag2Text/blob/main/tag2text_swin_14m.pth">Download link</a></td>
138
+ </tr>
139
+ </tbody>
140
+ </table>
141
+
142
+
143
+ ## :running: Tag2Text Inference
144
+
145
+ 1. Install the dependencies, run:
146
+
147
+ <pre/>pip install -r requirements.txt</pre>
148
+
149
+ 2. Download Tag2Text pretrained checkpoints.
150
+
151
+ 3. Get the tagging and captioning results:
152
+ <pre/>
153
+ python inference.py --image images/1641173_2291260800.jpg \
154
+ --pretrained pretrained/tag2text_swin_14m.pth
155
+ </pre>
156
+ Or get the tagging and sepcifed captioning results (optional):
157
+ <pre/>python inference.py --image images/1641173_2291260800.jpg \
158
+ --pretrained pretrained/tag2text_swin_14m.pth \
159
+ --specified-tags "cloud,sky"</pre>
160
+
161
+
162
+ ## :black_nib: Citation
163
+ If you find our work to be useful for your research, please consider citing.
164
+
165
+ ```
166
+ @misc{zhang2023recognize,
167
+ title={Recognize Anything: A Strong Image Tagging Model},
168
+ author={Youcai Zhang and Xinyu Huang and Jinyu Ma and Zhaoyang Li and Zhaochuan Luo and Yanchun Xie and Yuzhuo Qin and Tong Luo and Yaqian Li and Shilong Liu and Yandong Guo and Lei Zhang},
169
+ year={2023},
170
+ eprint={2306.03514},
171
+ archivePrefix={arXiv},
172
+ primaryClass={cs.CV}
173
+ }
174
+
175
+ @article{huang2023tag2text,
176
+ title={Tag2Text: Guiding Vision-Language Model via Image Tagging},
177
+ author={Huang, Xinyu and Zhang, Youcai and Ma, Jinyu and Tian, Weiwei and Feng, Rui and Zhang, Yuejie and Li, Yaqian and Guo, Yandong and Zhang, Lei},
178
+ journal={arXiv preprint arXiv:2303.05657},
179
+ year={2023}
180
+ }
181
+ ```
182
+
183
+ ## :hearts: Acknowledgements
184
+ This work is done with the help of the amazing code base of [BLIP](https://github.com/salesforce/BLIP), thanks very much!
185
+
186
+ We also want to thank @Cheng Rui @Shilong Liu @Ren Tianhe for their help in [marrying Tag2Text with Grounded-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything).
187
+
188
+
189
+
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+
4
+ import torch
5
+ import torchvision.transforms as transforms
6
+
7
+ from PIL import Image
8
+ from models.tag2text import tag2text_caption, ram
9
+
10
+ import gradio as gr
11
+
12
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
13
+
14
+ image_size = 384
15
+
16
+ normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
17
+ std=[0.229, 0.224, 0.225
18
+ ])
19
+ transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])
20
+
21
+ #######Tag2Text Model
22
+ pretrained = 'tag2text_swin_14m.pth'
23
+
24
+ model_tag2text = tag2text_caption(pretrained=pretrained, image_size=image_size, vit='swin_b' )
25
+
26
+ model_tag2text.eval()
27
+ model_tag2text = model_tag2text.to(device)
28
+
29
+
30
+ #######RAM Model
31
+ pretrained = 'ram_swin_large_14m.pth'
32
+
33
+ model_ram = ram(pretrained=pretrained, image_size=image_size, vit='swin_l' )
34
+
35
+ model_ram.eval()
36
+ model_ram = model_ram.to(device)
37
+
38
+
39
+ def inference(raw_image, model_n , input_tag):
40
+ raw_image = raw_image.resize((image_size, image_size))
41
+
42
+ image = transform(raw_image).unsqueeze(0).to(device)
43
+ if model_n == 'Recognize Anything Model':
44
+ model = model_ram
45
+ with torch.no_grad():
46
+ tags, tags_chinese = model.generate_tag(image)
47
+ return tags[0],tags_chinese[0], 'none'
48
+ else:
49
+ model = model_tag2text
50
+ model.threshold = 0.68
51
+ if input_tag == '' or input_tag == 'none' or input_tag == 'None':
52
+ input_tag_list = None
53
+ else:
54
+ input_tag_list = []
55
+ input_tag_list.append(input_tag.replace(',',' | '))
56
+ with torch.no_grad():
57
+
58
+
59
+ caption, tag_predict = model.generate(image,tag_input = input_tag_list,max_length = 50, return_tag_predict = True)
60
+ if input_tag_list == None:
61
+ tag_1 = tag_predict
62
+ tag_2 = ['none']
63
+ else:
64
+ _, tag_1 = model.generate(image,tag_input = None, max_length = 50, return_tag_predict = True)
65
+ tag_2 = tag_predict
66
+
67
+ return tag_1[0],'none',caption[0]
68
+
69
+
70
+ def build_gui():
71
+
72
+ description = """
73
+ <center><strong><font size='10'>Recognize Anything Model</font></strong></center>
74
+ <br>
75
+ Welcome to the Recognize Anything Model (RAM) and Tag2Text Model demo! <br><br>
76
+ <li>
77
+ <b>Recognize Anything Model:</b> Upload your image to get the <b>English and Chinese outputs of the image tags</b>!
78
+ </li>
79
+ <li>
80
+ <b>Tag2Text Model:</b> Upload your image to get the <b>tags</b> and <b>caption</b> of the image.
81
+ Optional: You can also input specified tags to get the corresponding caption.
82
+ </li>
83
+ """ # noqa
84
+
85
+ article = """
86
+ <p style='text-align: center'>
87
+ RAM and Tag2Text is training on open-source datasets, and we are persisting in refining and iterating upon it.<br/>
88
+ <a href='https://recognize-anything.github.io/' target='_blank'>Recognize Anything: A Strong Image Tagging Model</a>
89
+ |
90
+ <a href='https://https://tag2text.github.io/' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a>
91
+ |
92
+ <a href='https://github.com/xinyu1205/Tag2Text' target='_blank'>Github Repo</a>
93
+ </p>
94
+ """ # noqa
95
+
96
+ def inference_with_ram(img):
97
+ res = inference(img, "Recognize Anything Model", None)
98
+ return res[0], res[1]
99
+
100
+ def inference_with_t2t(img, input_tags):
101
+ res = inference(img, "Tag2Text Model", input_tags)
102
+ return res[0], res[2]
103
+
104
+ with gr.Blocks(title="Recognize Anything Model") as demo:
105
+ ###############
106
+ # components
107
+ ###############
108
+ gr.HTML(description)
109
+
110
+ with gr.Tab(label="Recognize Anything Model"):
111
+ with gr.Row():
112
+ with gr.Column():
113
+ ram_in_img = gr.Image(type="pil")
114
+ with gr.Row():
115
+ ram_btn_run = gr.Button(value="Run")
116
+ ram_btn_clear = gr.Button(value="Clear")
117
+ with gr.Column():
118
+ ram_out_tag = gr.Textbox(label="Tags")
119
+ ram_out_biaoqian = gr.Textbox(label="标签")
120
+ gr.Examples(
121
+ examples=[
122
+ ["images/demo1.jpg"],
123
+ ["images/demo2.jpg"],
124
+ ["images/demo4.jpg"],
125
+ ],
126
+ fn=inference_with_ram,
127
+ inputs=[ram_in_img],
128
+ outputs=[ram_out_tag, ram_out_biaoqian],
129
+ cache_examples=True
130
+ )
131
+
132
+ with gr.Tab(label="Tag2Text Model"):
133
+ with gr.Row():
134
+ with gr.Column():
135
+ t2t_in_img = gr.Image(type="pil")
136
+ t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)")
137
+ with gr.Row():
138
+ t2t_btn_run = gr.Button(value="Run")
139
+ t2t_btn_clear = gr.Button(value="Clear")
140
+ with gr.Column():
141
+ t2t_out_tag = gr.Textbox(label="Tags")
142
+ t2t_out_cap = gr.Textbox(label="Caption")
143
+ gr.Examples(
144
+ examples=[
145
+ ["images/demo4.jpg", ""],
146
+ ["images/demo4.jpg", "power line"],
147
+ ["images/demo4.jpg", "track, train"],
148
+ ],
149
+ fn=inference_with_t2t,
150
+ inputs=[t2t_in_img, t2t_in_tag],
151
+ outputs=[t2t_out_tag, t2t_out_cap],
152
+ cache_examples=True
153
+ )
154
+
155
+ gr.HTML(article)
156
+
157
+ ###############
158
+ # events
159
+ ###############
160
+ # run inference
161
+ ram_btn_run.click(
162
+ fn=inference_with_ram,
163
+ inputs=[ram_in_img],
164
+ outputs=[ram_out_tag, ram_out_biaoqian]
165
+ )
166
+ t2t_btn_run.click(
167
+ fn=inference_with_t2t,
168
+ inputs=[t2t_in_img, t2t_in_tag],
169
+ outputs=[t2t_out_tag, t2t_out_cap]
170
+ )
171
+
172
+ # # images of two image panels should keep the same
173
+ # # and clear old outputs when image changes
174
+ # # slow due to internet latency when deployed on huggingface, comment out
175
+ # def sync_img(v):
176
+ # return [gr.update(value=v)] + [gr.update(value="")] * 4
177
+
178
+ # ram_in_img.upload(fn=sync_img, inputs=[ram_in_img], outputs=[
179
+ # t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap
180
+ # ])
181
+ # ram_in_img.clear(fn=sync_img, inputs=[ram_in_img], outputs=[
182
+ # t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap
183
+ # ])
184
+ # t2t_in_img.clear(fn=sync_img, inputs=[t2t_in_img], outputs=[
185
+ # ram_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap
186
+ # ])
187
+ # t2t_in_img.upload(fn=sync_img, inputs=[t2t_in_img], outputs=[
188
+ # ram_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap
189
+ # ])
190
+
191
+ # clear all
192
+ def clear_all():
193
+ return [gr.update(value=None)] * 2 + [gr.update(value="")] * 5
194
+
195
+ ram_btn_clear.click(fn=clear_all, inputs=[], outputs=[
196
+ ram_in_img, t2t_in_img,
197
+ ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap
198
+ ])
199
+ t2t_btn_clear.click(fn=clear_all, inputs=[], outputs=[
200
+ ram_in_img, t2t_in_img,
201
+ ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap
202
+ ])
203
+
204
+ return demo
205
+
206
+
207
+ if __name__ == "__main__":
208
+ demo = build_gui()
209
+ demo.launch(enable_queue=True)
configs/med_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30524,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true
21
+ }
configs/q2l_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 4,
15
+ "num_hidden_layers": 2,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30522,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true,
21
+ "add_tag_cross_attention": false
22
+ }
configs/swin/config_swinB_224.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
3
+ "vision_width": 1024,
4
+ "image_res": 224,
5
+ "window_size": 7,
6
+ "embed_dim": 128,
7
+ "depths": [ 2, 2, 18, 2 ],
8
+ "num_heads": [ 4, 8, 16, 32 ]
9
+ }
10
+
configs/swin/config_swinB_384.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
3
+ "vision_width": 1024,
4
+ "image_res": 384,
5
+ "window_size": 12,
6
+ "embed_dim": 128,
7
+ "depths": [ 2, 2, 18, 2 ],
8
+ "num_heads": [ 4, 8, 16, 32 ]
9
+ }
10
+
configs/swin/config_swinB_480.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
3
+ "vision_width": 1024,
4
+ "image_res": 480,
5
+ "window_size": 15,
6
+ "embed_dim": 128,
7
+ "depths": [ 2, 2, 18, 2 ],
8
+ "num_heads": [ 4, 8, 16, 32 ]
9
+ }
configs/swin/config_swinB_576.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
3
+ "vision_width": 1024,
4
+ "image_res": 576,
5
+ "window_size": 18,
6
+ "embed_dim": 128,
7
+ "depths": [ 2, 2, 18, 2 ],
8
+ "num_heads": [ 4, 8, 16, 32 ]
9
+ }
configs/swin/config_swinB_608.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
3
+ "vision_width": 1024,
4
+ "image_res": 608,
5
+ "window_size": 19,
6
+ "embed_dim": 128,
7
+ "depths": [ 2, 2, 18, 2 ],
8
+ "num_heads": [ 4, 8, 16, 32 ]
9
+ }
configs/swin/config_swinL_384.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ckpt": "pretrain_model/swin_large_patch4_window12_384_22k.pth",
3
+ "vision_width": 1536,
4
+ "image_res": 384,
5
+ "window_size": 12,
6
+ "embed_dim": 192,
7
+ "depths": [ 2, 2, 18, 2 ],
8
+ "num_heads": [ 6, 12, 24, 48 ]
9
+ }
configs/tag2text_caption.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/home/notebook/data/group/projects/tagging/caption/datasets/public/coco/'
2
+
3
+ ann_root: 'dataset/caption_dataset'
4
+ coco_gt_root: 'dataset/caption_dataset'
5
+
6
+ pretrained: '/home/notebook/code/personal/S9049611/BLIP/output/pretrain_caption_tagtotext_v2_bert_asl'
7
+
8
+ # size of vit model; base or large
9
+ vit: 'swin_b'
10
+ vit_grad_ckpt: False
11
+ vit_ckpt_layer: 0
12
+
13
+ batch_size: 35
14
+ init_lr: 5e-6
15
+
16
+ image_size: 384
17
+
18
+ # generation configs
19
+ max_length: 20
20
+ min_length: 5
21
+ num_beams: 3
22
+ prompt: 'a picture of '
23
+
24
+ # optimizer
25
+ weight_decay: 0.05
26
+ min_lr: 0
27
+ max_epoch: 10
28
+
29
+ text_pretrain: 'bert'
30
+
31
+ class_num: 3429
32
+ threshold: 0.7
33
+
data/__pycache__/tag_class.cpython-37.pyc ADDED
Binary file (52 kB). View file
 
data/ram_tag_list.txt ADDED
@@ -0,0 +1,4585 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 3D CG rendering
2
+ 3D glasses
3
+ abacus
4
+ abalone
5
+ monastery
6
+ belly
7
+ academy
8
+ accessory
9
+ accident
10
+ accordion
11
+ acorn
12
+ acrylic paint
13
+ act
14
+ action
15
+ action film
16
+ activity
17
+ actor
18
+ adaptation
19
+ add
20
+ adhesive tape
21
+ adjust
22
+ adult
23
+ adventure
24
+ advertisement
25
+ antenna
26
+ aerobics
27
+ spray can
28
+ afro
29
+ agriculture
30
+ aid
31
+ air conditioner
32
+ air conditioning
33
+ air sock
34
+ aircraft cabin
35
+ aircraft model
36
+ air field
37
+ air line
38
+ airliner
39
+ airman
40
+ plane
41
+ airplane window
42
+ airport
43
+ airport runway
44
+ airport terminal
45
+ airship
46
+ airshow
47
+ aisle
48
+ alarm
49
+ alarm clock
50
+ mollymawk
51
+ album
52
+ album cover
53
+ alcohol
54
+ alcove
55
+ algae
56
+ alley
57
+ almond
58
+ aloe vera
59
+ alp
60
+ alpaca
61
+ alphabet
62
+ german shepherd
63
+ altar
64
+ amber
65
+ ambulance
66
+ bald eagle
67
+ American shorthair
68
+ amethyst
69
+ amphitheater
70
+ amplifier
71
+ amusement park
72
+ amusement ride
73
+ anchor
74
+ ancient
75
+ anemone
76
+ angel
77
+ angle
78
+ animal
79
+ animal sculpture
80
+ animal shelter
81
+ animation
82
+ animation film
83
+ animator
84
+ anime
85
+ ankle
86
+ anklet
87
+ anniversary
88
+ trench coat
89
+ ant
90
+ antelope
91
+ antique
92
+ antler
93
+ anvil
94
+ apartment
95
+ ape
96
+ app
97
+ app icon
98
+ appear
99
+ appearance
100
+ appetizer
101
+ applause
102
+ apple
103
+ apple juice
104
+ apple pie
105
+ apple tree
106
+ applesauce
107
+ appliance
108
+ appointment
109
+ approach
110
+ apricot
111
+ apron
112
+ aqua
113
+ aquarium
114
+ aquarium fish
115
+ aqueduct
116
+ arcade
117
+ arcade machine
118
+ arch
119
+ arch bridge
120
+ archaelogical excavation
121
+ archery
122
+ archipelago
123
+ architect
124
+ architecture
125
+ archive
126
+ archway
127
+ area
128
+ arena
129
+ argument
130
+ arm
131
+ armadillo
132
+ armband
133
+ armchair
134
+ armoire
135
+ armor
136
+ army
137
+ army base
138
+ army tank
139
+ array
140
+ arrest
141
+ arrow
142
+ art
143
+ art exhibition
144
+ art gallery
145
+ art print
146
+ art school
147
+ art studio
148
+ art vector illustration
149
+ artichoke
150
+ article
151
+ artifact
152
+ artist
153
+ artists loft
154
+ ash
155
+ ashtray
156
+ asia temple
157
+ asparagus
158
+ asphalt road
159
+ assemble
160
+ assembly
161
+ assembly line
162
+ association
163
+ astronaut
164
+ astronomer
165
+ athlete
166
+ athletic
167
+ atlas
168
+ atm
169
+ atmosphere
170
+ atrium
171
+ attach
172
+ fighter jet
173
+ attend
174
+ attraction
175
+ atv
176
+ eggplant
177
+ auction
178
+ audi
179
+ audio
180
+ auditorium
181
+ aurora
182
+ author
183
+ auto factory
184
+ auto mechanic
185
+ auto part
186
+ auto show
187
+ auto showroom
188
+ car battery
189
+ automobile make
190
+ automobile model
191
+ motor vehicle
192
+ autumn
193
+ autumn forest
194
+ autumn leave
195
+ autumn park
196
+ autumn tree
197
+ avatar
198
+ avenue
199
+ aviator sunglasses
200
+ avocado
201
+ award
202
+ award ceremony
203
+ award winner
204
+ shed
205
+ ax
206
+ azalea
207
+ baboon
208
+ baby
209
+ baby bottle
210
+ baby carriage
211
+ baby clothe
212
+ baby elephant
213
+ baby food
214
+ baby seat
215
+ baby shower
216
+ back
217
+ backdrop
218
+ backlight
219
+ backpack
220
+ backyard
221
+ bacon
222
+ badge
223
+ badger
224
+ badlands
225
+ badminton
226
+ badminton racket
227
+ bag
228
+ bagel
229
+ bagpipe
230
+ baguette
231
+ bait
232
+ baked goods
233
+ baker
234
+ bakery
235
+ baking
236
+ baking sheet
237
+ balance
238
+ balance car
239
+ balcony
240
+ ball
241
+ ball pit
242
+ ballerina
243
+ ballet
244
+ ballet dancer
245
+ ballet skirt
246
+ balloon
247
+ balloon arch
248
+ baseball player
249
+ ballroom
250
+ bamboo
251
+ bamboo forest
252
+ banana
253
+ banana bread
254
+ banana leaf
255
+ banana tree
256
+ band
257
+ band aid
258
+ bandage
259
+ headscarf
260
+ bandeau
261
+ bangs
262
+ bracelet
263
+ balustrade
264
+ banjo
265
+ bank
266
+ bank card
267
+ bank vault
268
+ banknote
269
+ banner
270
+ banquet
271
+ banquet hall
272
+ banyan tree
273
+ baozi
274
+ baptism
275
+ bar
276
+ bar code
277
+ bar stool
278
+ barbecue
279
+ barbecue grill
280
+ barbell
281
+ barber
282
+ barber shop
283
+ barbie
284
+ barge
285
+ barista
286
+ bark
287
+ barley
288
+ barn
289
+ barn owl
290
+ barn door
291
+ barrel
292
+ barricade
293
+ barrier
294
+ handcart
295
+ bartender
296
+ baseball
297
+ baseball base
298
+ baseball bat
299
+ baseball hat
300
+ baseball stadium
301
+ baseball game
302
+ baseball glove
303
+ baseball pitcher
304
+ baseball team
305
+ baseball uniform
306
+ basement
307
+ basil
308
+ basin
309
+ basket
310
+ basket container
311
+ basketball
312
+ basketball backboard
313
+ basketball coach
314
+ basketball court
315
+ basketball game
316
+ basketball hoop
317
+ basketball player
318
+ basketball stadium
319
+ basketball team
320
+ bass
321
+ bass guitar
322
+ bass horn
323
+ bassist
324
+ bat
325
+ bath
326
+ bath heater
327
+ bath mat
328
+ bath towel
329
+ swimwear
330
+ bathrobe
331
+ bathroom
332
+ bathroom accessory
333
+ bathroom cabinet
334
+ bathroom door
335
+ bathroom mirror
336
+ bathroom sink
337
+ toilet paper
338
+ bathroom window
339
+ batman
340
+ wand
341
+ batter
342
+ battery
343
+ battle
344
+ battle rope
345
+ battleship
346
+ bay
347
+ bay bridge
348
+ bay window
349
+ bayberry
350
+ bazaar
351
+ beach
352
+ beach ball
353
+ beach chair
354
+ beach house
355
+ beach hut
356
+ beach towel
357
+ beach volleyball
358
+ lighthouse
359
+ bead
360
+ beagle
361
+ beak
362
+ beaker
363
+ beam
364
+ bean
365
+ bean bag chair
366
+ beanbag
367
+ bear
368
+ bear cub
369
+ beard
370
+ beast
371
+ beat
372
+ beautiful
373
+ beauty
374
+ beauty salon
375
+ beaver
376
+ bed
377
+ bedcover
378
+ bed frame
379
+ bedroom
380
+ bedding
381
+ bedpan
382
+ bedroom window
383
+ bedside lamp
384
+ bee
385
+ beech tree
386
+ beef
387
+ beekeeper
388
+ beeper
389
+ beer
390
+ beer bottle
391
+ beer can
392
+ beer garden
393
+ beer glass
394
+ beer hall
395
+ beet
396
+ beetle
397
+ beige
398
+ clock
399
+ bell pepper
400
+ bell tower
401
+ belt
402
+ belt buckle
403
+ bench
404
+ bend
405
+ bengal tiger
406
+ bento
407
+ beret
408
+ berry
409
+ berth
410
+ beverage
411
+ bib
412
+ bibimbap
413
+ bible
414
+ bichon
415
+ bicycle
416
+ bicycle helmet
417
+ bicycle wheel
418
+ biker
419
+ bidet
420
+ big ben
421
+ bike lane
422
+ bike path
423
+ bike racing
424
+ bike ride
425
+ bikini
426
+ bikini top
427
+ bill
428
+ billard
429
+ billboard
430
+ billiard table
431
+ bin
432
+ binder
433
+ binocular
434
+ biology laboratory
435
+ biplane
436
+ birch
437
+ birch tree
438
+ bird
439
+ bird bath
440
+ bird feeder
441
+ bird house
442
+ bird nest
443
+ birdbath
444
+ bird cage
445
+ birth
446
+ birthday
447
+ birthday cake
448
+ birthday candle
449
+ birthday card
450
+ birthday party
451
+ biscuit
452
+ bishop
453
+ bison
454
+ bit
455
+ bite
456
+ black
457
+ black sheep
458
+ blackberry
459
+ blackbird
460
+ blackboard
461
+ blacksmith
462
+ blade
463
+ blanket
464
+ sports coat
465
+ bleacher
466
+ blender
467
+ blessing
468
+ blind
469
+ eye mask
470
+ flasher
471
+ snowstorm
472
+ block
473
+ blog
474
+ blood
475
+ bloom
476
+ blossom
477
+ blouse
478
+ blow
479
+ hair drier
480
+ blowfish
481
+ blue
482
+ blue artist
483
+ blue jay
484
+ blue sky
485
+ blueberry
486
+ bluebird
487
+ pig
488
+ board
489
+ board eraser
490
+ board game
491
+ boardwalk
492
+ boat
493
+ boat deck
494
+ boat house
495
+ paddle
496
+ boat ride
497
+ bobfloat
498
+ bobcat
499
+ body
500
+ bodyboard
501
+ bodybuilder
502
+ boiled egg
503
+ boiler
504
+ bolo tie
505
+ bolt
506
+ bomb
507
+ bomber
508
+ bonasa umbellu
509
+ bone
510
+ bonfire
511
+ bonnet
512
+ bonsai
513
+ book
514
+ book cover
515
+ bookcase
516
+ folder
517
+ bookmark
518
+ bookshelf
519
+ bookstore
520
+ boom microphone
521
+ boost
522
+ boot
523
+ border
524
+ Border collie
525
+ botanical garden
526
+ bottle
527
+ bottle cap
528
+ bottle opener
529
+ bottle screw
530
+ bougainvillea
531
+ boulder
532
+ bouquet
533
+ boutique
534
+ boutique hotel
535
+ bow
536
+ bow tie
537
+ bow window
538
+ bowl
539
+ bowling
540
+ bowling alley
541
+ bowling ball
542
+ bowling equipment
543
+ box
544
+ box girder bridge
545
+ box turtle
546
+ boxer
547
+ underdrawers
548
+ boxing
549
+ boxing glove
550
+ boxing ring
551
+ boy
552
+ brace
553
+ bracket
554
+ braid
555
+ brain
556
+ brake
557
+ brake light
558
+ branch
559
+ brand
560
+ brandy
561
+ brass
562
+ brass plaque
563
+ bread
564
+ breadbox
565
+ break
566
+ breakfast
567
+ seawall
568
+ chest
569
+ brewery
570
+ brick
571
+ brick building
572
+ wall
573
+ brickwork
574
+ wedding dress
575
+ bride
576
+ groom
577
+ bridesmaid
578
+ bridge
579
+ bridle
580
+ briefcase
581
+ bright
582
+ brim
583
+ broach
584
+ broadcasting
585
+ broccoli
586
+ bronze
587
+ bronze medal
588
+ bronze sculpture
589
+ bronze statue
590
+ brooch
591
+ creek
592
+ broom
593
+ broth
594
+ brown
595
+ brown bear
596
+ brownie
597
+ brunch
598
+ brunette
599
+ brush
600
+ coyote
601
+ brussels sprout
602
+ bubble
603
+ bubble gum
604
+ bubble tea
605
+ bucket cabinet
606
+ shield
607
+ bud
608
+ buddha
609
+ buffalo
610
+ buffet
611
+ bug
612
+ build
613
+ builder
614
+ building
615
+ building block
616
+ building facade
617
+ building material
618
+ lamp
619
+ bull
620
+ bulldog
621
+ bullet
622
+ bullet train
623
+ bulletin board
624
+ bulletproof vest
625
+ bullfighting
626
+ megaphone
627
+ bullring
628
+ bumblebee
629
+ bumper
630
+ roll
631
+ bundle
632
+ bungee
633
+ bunk bed
634
+ bunker
635
+ bunny
636
+ buoy
637
+ bureau
638
+ burial chamber
639
+ burn
640
+ burrito
641
+ bus
642
+ bus driver
643
+ bus interior
644
+ bus station
645
+ bus stop
646
+ bus window
647
+ bush
648
+ business
649
+ business card
650
+ business executive
651
+ business suit
652
+ business team
653
+ business woman
654
+ businessman
655
+ bust
656
+ butcher
657
+ butchers shop
658
+ butte
659
+ butter
660
+ cream
661
+ butterfly
662
+ butterfly house
663
+ button
664
+ buttonwood
665
+ buy
666
+ taxi
667
+ cabana
668
+ cabbage
669
+ cabin
670
+ cabin car
671
+ cabinet
672
+ cabinetry
673
+ cable
674
+ cable car
675
+ cactus
676
+ cafe
677
+ canteen
678
+ cage
679
+ cake
680
+ cake stand
681
+ calculator
682
+ caldron
683
+ calendar
684
+ calf
685
+ call
686
+ phone box
687
+ calligraphy
688
+ calm
689
+ camcorder
690
+ camel
691
+ camera
692
+ camera lens
693
+ camouflage
694
+ camp
695
+ camper
696
+ campfire
697
+ camping
698
+ campsite
699
+ campus
700
+ can
701
+ can opener
702
+ canal
703
+ canary
704
+ cancer
705
+ candle
706
+ candle holder
707
+ candy
708
+ candy bar
709
+ candy cane
710
+ candy store
711
+ cane
712
+ jar
713
+ cannon
714
+ canopy
715
+ canopy bed
716
+ cantaloupe
717
+ cantilever bridge
718
+ canvas
719
+ canyon
720
+ cap
721
+ cape
722
+ cape cod
723
+ cappuccino
724
+ capsule
725
+ captain
726
+ capture
727
+ car
728
+ car dealership
729
+ car door
730
+ car interior
731
+ car logo
732
+ car mirror
733
+ parking lot
734
+ car seat
735
+ car show
736
+ car wash
737
+ car window
738
+ caramel
739
+ card
740
+ card game
741
+ cardboard
742
+ cardboard box
743
+ cardigan
744
+ cardinal
745
+ cargo
746
+ cargo aircraft
747
+ cargo ship
748
+ caribbean
749
+ carnation
750
+ carnival
751
+ carnivore
752
+ carousel
753
+ carp
754
+ carpenter
755
+ carpet
756
+ slipper
757
+ house finch
758
+ coach
759
+ dalmatian
760
+ aircraft carrier
761
+ carrot
762
+ carrot cake
763
+ carry
764
+ cart
765
+ carton
766
+ cartoon
767
+ cartoon character
768
+ cartoon illustration
769
+ cartoon style
770
+ carve
771
+ case
772
+ cash
773
+ cashew
774
+ casino
775
+ casserole
776
+ cassette
777
+ cassette deck
778
+ plaster bandage
779
+ casting
780
+ castle
781
+ cat
782
+ cat bed
783
+ cat food
784
+ cat furniture
785
+ cat tree
786
+ catacomb
787
+ catamaran
788
+ catamount
789
+ catch
790
+ catcher
791
+ caterpillar
792
+ catfish
793
+ cathedral
794
+ cattle
795
+ catwalk
796
+ catwalk show
797
+ cauliflower
798
+ cave
799
+ caviar
800
+ CD
801
+ CD player
802
+ cedar
803
+ ceiling
804
+ ceiling fan
805
+ celebrate
806
+ celebration
807
+ celebrity
808
+ celery
809
+ cello
810
+ smartphone
811
+ cement
812
+ graveyard
813
+ centerpiece
814
+ centipede
815
+ ceramic
816
+ ceramic tile
817
+ cereal
818
+ ceremony
819
+ certificate
820
+ chain
821
+ chain saw
822
+ chair
823
+ chairlift
824
+ daybed
825
+ chalet
826
+ chalice
827
+ chalk
828
+ chamber
829
+ chameleon
830
+ champagne
831
+ champagne flute
832
+ champion
833
+ championship
834
+ chandelier
835
+ changing table
836
+ channel
837
+ chap
838
+ chapel
839
+ character sculpture
840
+ charcoal
841
+ charge
842
+ charger
843
+ chariot
844
+ charity
845
+ charity event
846
+ charm
847
+ graph
848
+ chase
849
+ chassis
850
+ check
851
+ checkbook
852
+ chessboard
853
+ checklist
854
+ cheer
855
+ cheerlead
856
+ cheese
857
+ cheeseburger
858
+ cheesecake
859
+ cheetah
860
+ chef
861
+ chemical compound
862
+ chemist
863
+ chemistry
864
+ chemistry lab
865
+ cheongsam
866
+ cherry
867
+ cherry blossom
868
+ cherry tomato
869
+ cherry tree
870
+ chess
871
+ chestnut
872
+ chicken
873
+ chicken breast
874
+ chicken coop
875
+ chicken salad
876
+ chicken wing
877
+ garbanzo
878
+ chiffonier
879
+ chihuahua
880
+ child
881
+ child actor
882
+ childs room
883
+ chile
884
+ chili dog
885
+ chimney
886
+ chimpanzee
887
+ chinaware
888
+ chinese cabbage
889
+ chinese garden
890
+ chinese knot
891
+ chinese rose
892
+ chinese tower
893
+ chip
894
+ chipmunk
895
+ chisel
896
+ chocolate
897
+ chocolate bar
898
+ chocolate cake
899
+ chocolate chip
900
+ chocolate chip cookie
901
+ chocolate milk
902
+ chocolate mousse
903
+ truffle
904
+ choir
905
+ kitchen knife
906
+ cutting board
907
+ chopstick
908
+ christmas
909
+ christmas ball
910
+ christmas card
911
+ christmas decoration
912
+ christmas dinner
913
+ christmas eve
914
+ christmas hat
915
+ christmas light
916
+ christmas market
917
+ christmas ornament
918
+ christmas tree
919
+ chrysanthemum
920
+ church
921
+ church tower
922
+ cider
923
+ cigar
924
+ cigar box
925
+ cigarette
926
+ cigarette case
927
+ waistband
928
+ cinema
929
+ photographer
930
+ cinnamon
931
+ circle
932
+ circuit
933
+ circuit board
934
+ circus
935
+ water tank
936
+ citrus fruit
937
+ city
938
+ city bus
939
+ city hall
940
+ city nightview
941
+ city park
942
+ city skyline
943
+ city square
944
+ city street
945
+ city wall
946
+ city view
947
+ clam
948
+ clarinet
949
+ clasp
950
+ class
951
+ classic
952
+ classroom
953
+ clavicle
954
+ claw
955
+ clay
956
+ pottery
957
+ clean
958
+ clean room
959
+ cleaner
960
+ cleaning product
961
+ clear
962
+ cleat
963
+ clementine
964
+ client
965
+ cliff
966
+ climb
967
+ climb mountain
968
+ climber
969
+ clinic
970
+ clip
971
+ clip art
972
+ clipboard
973
+ clipper
974
+ clivia
975
+ cloak
976
+ clogs
977
+ close-up
978
+ closet
979
+ cloth
980
+ clothe
981
+ clothing
982
+ clothespin
983
+ clothesline
984
+ clothing store
985
+ cloud
986
+ cloud forest
987
+ cloudy
988
+ clover
989
+ joker
990
+ clown fish
991
+ club
992
+ clutch
993
+ clutch bag
994
+ coal
995
+ coast
996
+ coat
997
+ coatrack
998
+ cob
999
+ cock
1000
+ cockatoo
1001
+ cocker
1002
+ cockpit
1003
+ roach
1004
+ cocktail
1005
+ cocktail dress
1006
+ cocktail shaker
1007
+ cocktail table
1008
+ cocoa
1009
+ coconut
1010
+ coconut tree
1011
+ coffee
1012
+ coffee bean
1013
+ coffee cup
1014
+ coffee machine
1015
+ coffee shop
1016
+ coffeepot
1017
+ coffin
1018
+ cognac
1019
+ spiral
1020
+ coin
1021
+ coke
1022
+ colander
1023
+ cold
1024
+ slaw
1025
+ collaboration
1026
+ collage
1027
+ collection
1028
+ college student
1029
+ sheepdog
1030
+ crash
1031
+ color
1032
+ coloring book
1033
+ coloring material
1034
+ pony
1035
+ pillar
1036
+ comb
1037
+ combination lock
1038
+ comic
1039
+ comedy
1040
+ comedy film
1041
+ comet
1042
+ comfort
1043
+ comfort food
1044
+ comic book
1045
+ comic book character
1046
+ comic strip
1047
+ commander
1048
+ commentator
1049
+ community
1050
+ commuter
1051
+ company
1052
+ compass
1053
+ compete
1054
+ contest
1055
+ competitor
1056
+ composer
1057
+ composition
1058
+ compost
1059
+ computer
1060
+ computer box
1061
+ computer chair
1062
+ computer desk
1063
+ keyboard
1064
+ computer monitor
1065
+ computer room
1066
+ computer screen
1067
+ computer tower
1068
+ concept car
1069
+ concert
1070
+ concert hall
1071
+ conch
1072
+ concrete
1073
+ condiment
1074
+ condom
1075
+ condominium
1076
+ conductor
1077
+ cone
1078
+ meeting
1079
+ conference center
1080
+ conference hall
1081
+ meeting room
1082
+ confetti
1083
+ conflict
1084
+ confluence
1085
+ connect
1086
+ connector
1087
+ conservatory
1088
+ constellation
1089
+ construction site
1090
+ construction worker
1091
+ contain
1092
+ container
1093
+ container ship
1094
+ continent
1095
+ profile
1096
+ contract
1097
+ control
1098
+ control tower
1099
+ convenience store
1100
+ convention
1101
+ conversation
1102
+ converter
1103
+ convertible
1104
+ transporter
1105
+ cook
1106
+ cooking
1107
+ cooking spray
1108
+ cooker
1109
+ cool
1110
+ cooler
1111
+ copper
1112
+ copy
1113
+ coral
1114
+ coral reef
1115
+ rope
1116
+ corded phone
1117
+ liquor
1118
+ corgi
1119
+ cork
1120
+ corkboard
1121
+ cormorant
1122
+ corn
1123
+ corn field
1124
+ cornbread
1125
+ corner
1126
+ trumpet
1127
+ cornice
1128
+ cornmeal
1129
+ corral
1130
+ corridor
1131
+ corset
1132
+ cosmetic
1133
+ cosmetics brush
1134
+ cosmetics mirror
1135
+ cosplay
1136
+ costume
1137
+ costumer film designer
1138
+ infant bed
1139
+ cottage
1140
+ cotton
1141
+ cotton candy
1142
+ couch
1143
+ countdown
1144
+ counter
1145
+ counter top
1146
+ country artist
1147
+ country house
1148
+ country lane
1149
+ country pop artist
1150
+ countryside
1151
+ coupe
1152
+ couple
1153
+ couple photo
1154
+ courgette
1155
+ course
1156
+ court
1157
+ courthouse
1158
+ courtyard
1159
+ cousin
1160
+ coverall
1161
+ cow
1162
+ cowbell
1163
+ cowboy
1164
+ cowboy boot
1165
+ cowboy hat
1166
+ crab
1167
+ crabmeat
1168
+ crack
1169
+ cradle
1170
+ craft
1171
+ craftsman
1172
+ cranberry
1173
+ crane
1174
+ crape
1175
+ crapper
1176
+ crate
1177
+ crater lake
1178
+ lobster
1179
+ crayon
1180
+ cream cheese
1181
+ cream pitcher
1182
+ create
1183
+ creature
1184
+ credit card
1185
+ crescent
1186
+ croissant
1187
+ crest
1188
+ crew
1189
+ cricket
1190
+ cricket ball
1191
+ cricket team
1192
+ cricketer
1193
+ crochet
1194
+ crock pot
1195
+ crocodile
1196
+ crop
1197
+ crop top
1198
+ cross
1199
+ crossbar
1200
+ crossroad
1201
+ crosstalk
1202
+ crosswalk
1203
+ crouton
1204
+ crow
1205
+ crowbar
1206
+ crowd
1207
+ crowded
1208
+ crown
1209
+ crt screen
1210
+ crucifix
1211
+ cruise
1212
+ cruise ship
1213
+ cruiser
1214
+ crumb
1215
+ crush
1216
+ crutch
1217
+ crystal
1218
+ cub
1219
+ cube
1220
+ cucumber
1221
+ cue
1222
+ cuff
1223
+ cufflink
1224
+ cuisine
1225
+ farmland
1226
+ cup
1227
+ cupcake
1228
+ cupid
1229
+ curb
1230
+ curl
1231
+ hair roller
1232
+ currant
1233
+ currency
1234
+ curry
1235
+ curtain
1236
+ curve
1237
+ pad
1238
+ customer
1239
+ cut
1240
+ cutlery
1241
+ cycle
1242
+ cycling
1243
+ cyclone
1244
+ cylinder
1245
+ cymbal
1246
+ cypress
1247
+ cypress tree
1248
+ dachshund
1249
+ daffodil
1250
+ dagger
1251
+ dahlia
1252
+ daikon
1253
+ dairy
1254
+ daisy
1255
+ dam
1256
+ damage
1257
+ damp
1258
+ dance
1259
+ dance floor
1260
+ dance room
1261
+ dancer
1262
+ dandelion
1263
+ dark
1264
+ darkness
1265
+ dart
1266
+ dartboard
1267
+ dashboard
1268
+ date
1269
+ daughter
1270
+ dawn
1271
+ day bed
1272
+ daylight
1273
+ deadbolt
1274
+ death
1275
+ debate
1276
+ debris
1277
+ decanter
1278
+ deck
1279
+ decker bus
1280
+ decor
1281
+ decorate
1282
+ decorative picture
1283
+ deer
1284
+ defender
1285
+ deity
1286
+ delicatessen
1287
+ deliver
1288
+ demolition
1289
+ monster
1290
+ demonstration
1291
+ den
1292
+ denim jacket
1293
+ dentist
1294
+ department store
1295
+ depression
1296
+ derby
1297
+ dermopathy
1298
+ desert
1299
+ desert road
1300
+ design
1301
+ designer
1302
+ table
1303
+ table lamp
1304
+ desktop
1305
+ desktop computer
1306
+ dessert
1307
+ destruction
1308
+ detective
1309
+ detergent
1310
+ dew
1311
+ dial
1312
+ diamond
1313
+ diaper
1314
+ diaper bag
1315
+ journal
1316
+ die
1317
+ diet
1318
+ excavator
1319
+ number
1320
+ digital clock
1321
+ dill
1322
+ dinner
1323
+ rowboat
1324
+ dining room
1325
+ dinner party
1326
+ dinning table
1327
+ dinosaur
1328
+ dip
1329
+ diploma
1330
+ direct
1331
+ director
1332
+ dirt
1333
+ dirt bike
1334
+ dirt field
1335
+ dirt road
1336
+ dirt track
1337
+ disaster
1338
+ disciple
1339
+ disco
1340
+ disco ball
1341
+ discotheque
1342
+ disease
1343
+ plate
1344
+ dish antenna
1345
+ dish washer
1346
+ dishrag
1347
+ dishes
1348
+ dishsoap
1349
+ Disneyland
1350
+ dispenser
1351
+ display
1352
+ display window
1353
+ trench
1354
+ dive
1355
+ diver
1356
+ diving board
1357
+ paper cup
1358
+ dj
1359
+ doberman
1360
+ dock
1361
+ doctor
1362
+ document
1363
+ documentary
1364
+ dog
1365
+ dog bed
1366
+ dog breed
1367
+ dog collar
1368
+ dog food
1369
+ dog house
1370
+ doll
1371
+ dollar
1372
+ dollhouse
1373
+ dolly
1374
+ dolphin
1375
+ dome
1376
+ domicile
1377
+ domino
1378
+ donkey
1379
+ donut
1380
+ doodle
1381
+ door
1382
+ door handle
1383
+ doormat
1384
+ doorplate
1385
+ doorway
1386
+ dormitory
1387
+ dough
1388
+ downtown
1389
+ dozer
1390
+ drag
1391
+ dragon
1392
+ dragonfly
1393
+ drain
1394
+ drama
1395
+ drama film
1396
+ draw
1397
+ drawer
1398
+ drawing
1399
+ drawing pin
1400
+ pigtail
1401
+ dress
1402
+ dress hat
1403
+ dress shirt
1404
+ dress shoe
1405
+ dress suit
1406
+ dresser
1407
+ dressing room
1408
+ dribble
1409
+ drift
1410
+ driftwood
1411
+ drill
1412
+ drink
1413
+ drinking water
1414
+ drive
1415
+ driver
1416
+ driveway
1417
+ drone
1418
+ drop
1419
+ droplight
1420
+ dropper
1421
+ drought
1422
+ medicine
1423
+ pharmacy
1424
+ drum
1425
+ drummer
1426
+ drumstick
1427
+ dry
1428
+ duchess
1429
+ duck
1430
+ duckbill
1431
+ duckling
1432
+ duct tape
1433
+ dude
1434
+ duet
1435
+ duffel
1436
+ canoe
1437
+ dumbbell
1438
+ dumpling
1439
+ dune
1440
+ dunk
1441
+ durian
1442
+ dusk
1443
+ dust
1444
+ garbage truck
1445
+ dustpan
1446
+ duvet
1447
+ DVD
1448
+ dye
1449
+ eagle
1450
+ ear
1451
+ earmuff
1452
+ earphone
1453
+ earplug
1454
+ earring
1455
+ earthquake
1456
+ easel
1457
+ easter
1458
+ easter bunny
1459
+ easter egg
1460
+ eat
1461
+ restaurant
1462
+ eclair
1463
+ eclipse
1464
+ ecosystem
1465
+ edit
1466
+ education
1467
+ educator
1468
+ eel
1469
+ egg
1470
+ egg roll
1471
+ egg tart
1472
+ eggbeater
1473
+ egret
1474
+ Eiffel tower
1475
+ elastic band
1476
+ senior
1477
+ electric chair
1478
+ electric drill
1479
+ electrician
1480
+ electricity
1481
+ electron
1482
+ electronic
1483
+ elephant
1484
+ elevation map
1485
+ elevator
1486
+ elevator car
1487
+ elevator door
1488
+ elevator lobby
1489
+ elevator shaft
1490
+ embankment
1491
+ embassy
1492
+ embellishment
1493
+ ember
1494
+ emblem
1495
+ embroidery
1496
+ emerald
1497
+ emergency
1498
+ emergency service
1499
+ emergency vehicle
1500
+ emotion
1501
+ Empire State Building
1502
+ enamel
1503
+ enclosure
1504
+ side table
1505
+ energy
1506
+ engagement
1507
+ engagement ring
1508
+ engine
1509
+ engine room
1510
+ engineer
1511
+ engineering
1512
+ english shorthair
1513
+ ensemble
1514
+ enter
1515
+ entertainer
1516
+ entertainment
1517
+ entertainment center
1518
+ entrance
1519
+ entrance hall
1520
+ envelope
1521
+ equestrian
1522
+ equipment
1523
+ eraser
1524
+ erhu
1525
+ erosion
1526
+ escalator
1527
+ escargot
1528
+ espresso
1529
+ estate
1530
+ estuary
1531
+ eucalyptus tree
1532
+ evening
1533
+ evening dress
1534
+ evening light
1535
+ evening sky
1536
+ evening sun
1537
+ event
1538
+ evergreen
1539
+ ewe
1540
+ excavation
1541
+ exercise
1542
+ exhaust hood
1543
+ exhibition
1544
+ exit
1545
+ explorer
1546
+ explosion
1547
+ extension cord
1548
+ extinguisher
1549
+ extractor
1550
+ extrude
1551
+ eye
1552
+ eye shadow
1553
+ eyebrow
1554
+ eyeliner
1555
+ fabric
1556
+ fabric store
1557
+ facade
1558
+ face
1559
+ face close-up
1560
+ face powder
1561
+ face towel
1562
+ facial tissue holder
1563
+ facility
1564
+ factory
1565
+ factory workshop
1566
+ fair
1567
+ fairground
1568
+ fairy
1569
+ falcon
1570
+ fall
1571
+ family
1572
+ family car
1573
+ family photo
1574
+ family room
1575
+ fan
1576
+ fang
1577
+ farm
1578
+ farmer
1579
+ farmer market
1580
+ farmhouse
1581
+ fashion
1582
+ fashion accessory
1583
+ fashion designer
1584
+ fashion girl
1585
+ fashion illustration
1586
+ fashion look
1587
+ fashion model
1588
+ fashion show
1589
+ fast food
1590
+ fastfood restaurant
1591
+ father
1592
+ faucet
1593
+ fault
1594
+ fauna
1595
+ fawn
1596
+ fax
1597
+ feast
1598
+ feather
1599
+ fedora
1600
+ feed
1601
+ feedbag
1602
+ feeding
1603
+ feeding chair
1604
+ feline
1605
+ mountain lion
1606
+ fence
1607
+ fender
1608
+ fern
1609
+ ferret
1610
+ ferris wheel
1611
+ ferry
1612
+ fertilizer
1613
+ festival
1614
+ fiber
1615
+ fiction
1616
+ fiction book
1617
+ field
1618
+ field road
1619
+ fig
1620
+ fight
1621
+ figure skater
1622
+ figurine
1623
+ file
1624
+ file photo
1625
+ file cabinet
1626
+ fill
1627
+ film camera
1628
+ film director
1629
+ film format
1630
+ film premiere
1631
+ film producer
1632
+ filming
1633
+ filter
1634
+ fin
1635
+ hand
1636
+ finish line
1637
+ fir
1638
+ fir tree
1639
+ fire
1640
+ fire alarm
1641
+ fire department
1642
+ fire truck
1643
+ fire escape
1644
+ fire hose
1645
+ fire pit
1646
+ fire station
1647
+ firecracker
1648
+ fireman
1649
+ fireplace
1650
+ firework
1651
+ firework display
1652
+ first-aid kit
1653
+ fish
1654
+ fish boat
1655
+ fish market
1656
+ fish pond
1657
+ fishbowl
1658
+ fisherman
1659
+ fishing
1660
+ fishing boat
1661
+ fishing net
1662
+ fishing pole
1663
+ fishing village
1664
+ fitness
1665
+ fitness course
1666
+ five
1667
+ fixture
1668
+ fjord
1669
+ flag
1670
+ flag pole
1671
+ flake
1672
+ flame
1673
+ flamingo
1674
+ flannel
1675
+ flap
1676
+ flare
1677
+ flash
1678
+ flask
1679
+ flat
1680
+ flatfish
1681
+ flavor
1682
+ flea
1683
+ flea market
1684
+ fleet
1685
+ flight
1686
+ flight attendant
1687
+ flip
1688
+ flip-flop
1689
+ flipchart
1690
+ float
1691
+ flock
1692
+ flood
1693
+ floor
1694
+ floor fan
1695
+ floor mat
1696
+ floor plan
1697
+ floor window
1698
+ floral arrangement
1699
+ florist
1700
+ floss
1701
+ flour
1702
+ flow
1703
+ flower
1704
+ flower basket
1705
+ flower bed
1706
+ flower box
1707
+ flower field
1708
+ flower girl
1709
+ flower market
1710
+ fluid
1711
+ flush
1712
+ flute
1713
+ fly
1714
+ fly fishing
1715
+ flyer
1716
+ horse
1717
+ foam
1718
+ fog
1719
+ foggy
1720
+ foie gra
1721
+ foil
1722
+ folding chair
1723
+ leaf
1724
+ folk artist
1725
+ folk dance
1726
+ folk rock artist
1727
+ fondant
1728
+ hotpot
1729
+ font
1730
+ food
1731
+ food coloring
1732
+ food court
1733
+ food processor
1734
+ food stand
1735
+ food truck
1736
+ foosball
1737
+ foot
1738
+ foot bridge
1739
+ football
1740
+ football coach
1741
+ football college game
1742
+ football match
1743
+ football field
1744
+ football game
1745
+ football helmet
1746
+ football player
1747
+ football stadium
1748
+ football team
1749
+ path
1750
+ footprint
1751
+ footrest
1752
+ footstall
1753
+ footwear
1754
+ forbidden city
1755
+ ford
1756
+ forehead
1757
+ forest
1758
+ forest fire
1759
+ forest floor
1760
+ forest path
1761
+ forest road
1762
+ forge
1763
+ fork
1764
+ forklift
1765
+ form
1766
+ formal garden
1767
+ formation
1768
+ formula 1
1769
+ fort
1770
+ fortification
1771
+ forward
1772
+ fossil
1773
+ foundation
1774
+ fountain
1775
+ fountain pen
1776
+ fox
1777
+ frame
1778
+ freckle
1779
+ highway
1780
+ lorry
1781
+ French
1782
+ French bulldog
1783
+ French fries
1784
+ French toast
1785
+ freshener
1786
+ fridge
1787
+ fried chicken
1788
+ fried egg
1789
+ fried rice
1790
+ friendship
1791
+ frisbee
1792
+ frog
1793
+ frost
1794
+ frosting
1795
+ frosty
1796
+ frozen
1797
+ fruit
1798
+ fruit cake
1799
+ fruit dish
1800
+ fruit market
1801
+ fruit salad
1802
+ fruit stand
1803
+ fruit tree
1804
+ fruits shop
1805
+ fry
1806
+ frying pan
1807
+ fudge
1808
+ fuel
1809
+ fume hood
1810
+ fun
1811
+ funeral
1812
+ fungi
1813
+ funnel
1814
+ fur
1815
+ fur coat
1816
+ furniture
1817
+ futon
1818
+ gadget
1819
+ muzzle
1820
+ galaxy
1821
+ gallery
1822
+ game
1823
+ game board
1824
+ game controller
1825
+ ham
1826
+ gang
1827
+ garage
1828
+ garage door
1829
+ garage kit
1830
+ garbage
1831
+ garden
1832
+ garden asparagus
1833
+ garden hose
1834
+ garden spider
1835
+ gardener
1836
+ gardening
1837
+ garfield
1838
+ gargoyle
1839
+ wreath
1840
+ garlic
1841
+ garment
1842
+ gas
1843
+ gas station
1844
+ gas stove
1845
+ gasmask
1846
+ collect
1847
+ gathering
1848
+ gauge
1849
+ gazebo
1850
+ gear
1851
+ gecko
1852
+ geisha
1853
+ gel
1854
+ general store
1855
+ generator
1856
+ geranium
1857
+ ghost
1858
+ gift
1859
+ gift bag
1860
+ gift basket
1861
+ gift box
1862
+ gift card
1863
+ gift shop
1864
+ gift wrap
1865
+ gig
1866
+ gin
1867
+ ginger
1868
+ gingerbread
1869
+ gingerbread house
1870
+ ginkgo tree
1871
+ giraffe
1872
+ girl
1873
+ give
1874
+ glacier
1875
+ gladiator
1876
+ glass bead
1877
+ glass bottle
1878
+ glass bowl
1879
+ glass box
1880
+ glass building
1881
+ glass door
1882
+ glass floor
1883
+ glass house
1884
+ glass jar
1885
+ glass plate
1886
+ glass table
1887
+ glass vase
1888
+ glass wall
1889
+ glass window
1890
+ glasses
1891
+ glaze
1892
+ glider
1893
+ earth
1894
+ glove
1895
+ glow
1896
+ glue pudding
1897
+ go
1898
+ go for
1899
+ goal
1900
+ goalkeeper
1901
+ goat
1902
+ goat cheese
1903
+ gobi
1904
+ goggles
1905
+ gold
1906
+ gold medal
1907
+ Golden Gate Bridge
1908
+ golden retriever
1909
+ goldfish
1910
+ golf
1911
+ golf cap
1912
+ golf cart
1913
+ golf club
1914
+ golf course
1915
+ golfer
1916
+ goose
1917
+ gorilla
1918
+ gothic
1919
+ gourd
1920
+ government
1921
+ government agency
1922
+ gown
1923
+ graduate
1924
+ graduation
1925
+ grain
1926
+ grampus
1927
+ grand prix
1928
+ grandfather
1929
+ grandmother
1930
+ grandparent
1931
+ granite
1932
+ granola
1933
+ grape
1934
+ grapefruit
1935
+ wine
1936
+ grass
1937
+ grasshopper
1938
+ grassland
1939
+ grassy
1940
+ grater
1941
+ grave
1942
+ gravel
1943
+ gravestone
1944
+ gravy
1945
+ gravy boat
1946
+ gray
1947
+ graze
1948
+ grazing
1949
+ green
1950
+ greenery
1951
+ greet
1952
+ greeting
1953
+ greeting card
1954
+ greyhound
1955
+ grid
1956
+ griddle
1957
+ grill
1958
+ grille
1959
+ grilled eel
1960
+ grind
1961
+ grinder
1962
+ grits
1963
+ grocery bag
1964
+ grotto
1965
+ ground squirrel
1966
+ group
1967
+ group photo
1968
+ grove
1969
+ grow
1970
+ guacamole
1971
+ guard
1972
+ guard dog
1973
+ guest house
1974
+ guest room
1975
+ guide
1976
+ guinea pig
1977
+ guitar
1978
+ guitarist
1979
+ gulf
1980
+ gull
1981
+ gun
1982
+ gundam
1983
+ gurdwara
1984
+ guzheng
1985
+ gym
1986
+ gymnast
1987
+ habitat
1988
+ hacker
1989
+ hail
1990
+ hair
1991
+ hair color
1992
+ hair spray
1993
+ hairbrush
1994
+ haircut
1995
+ hairgrip
1996
+ hairnet
1997
+ hairpin
1998
+ hairstyle
1999
+ half
2000
+ hall
2001
+ halloween
2002
+ halloween costume
2003
+ halloween pumpkin
2004
+ halter top
2005
+ hamburg
2006
+ hamburger
2007
+ hami melon
2008
+ hammer
2009
+ hammock
2010
+ hamper
2011
+ hamster
2012
+ hand dryer
2013
+ hand glass
2014
+ hand towel
2015
+ handbag
2016
+ handball
2017
+ handcuff
2018
+ handgun
2019
+ handkerchief
2020
+ handle
2021
+ handsaw
2022
+ handshake
2023
+ handstand
2024
+ handwriting
2025
+ hanfu
2026
+ hang
2027
+ hangar
2028
+ hanger
2029
+ happiness
2030
+ harbor
2031
+ harbor seal
2032
+ hard rock artist
2033
+ hardback book
2034
+ safety helmet
2035
+ hardware
2036
+ hardware store
2037
+ hardwood
2038
+ hardwood floor
2039
+ mouth organ
2040
+ pipe organ
2041
+ harpsichord
2042
+ harvest
2043
+ harvester
2044
+ hassock
2045
+ hat
2046
+ hatbox
2047
+ hautboy
2048
+ hawthorn
2049
+ hay
2050
+ hayfield
2051
+ hazelnut
2052
+ head
2053
+ head coach
2054
+ headlight
2055
+ headboard
2056
+ headdress
2057
+ headland
2058
+ headquarter
2059
+ hearing
2060
+ heart
2061
+ heart shape
2062
+ heat
2063
+ heater
2064
+ heather
2065
+ hedge
2066
+ hedgehog
2067
+ heel
2068
+ helicopter
2069
+ heliport
2070
+ helmet
2071
+ help
2072
+ hen
2073
+ henna
2074
+ herb
2075
+ herd
2076
+ hermit crab
2077
+ hero
2078
+ heron
2079
+ hibiscus
2080
+ hibiscus flower
2081
+ hide
2082
+ high bar
2083
+ high heel
2084
+ highland
2085
+ highlight
2086
+ hike
2087
+ hiker
2088
+ hiking boot
2089
+ hiking equipment
2090
+ hill
2091
+ hill country
2092
+ hill station
2093
+ hillside
2094
+ hindu temple
2095
+ hinge
2096
+ hip
2097
+ hip hop artist
2098
+ hippo
2099
+ historian
2100
+ historic
2101
+ history
2102
+ hockey
2103
+ hockey arena
2104
+ hockey game
2105
+ hockey player
2106
+ hockey stick
2107
+ hoe
2108
+ hole
2109
+ vacation
2110
+ holly
2111
+ holothurian
2112
+ home
2113
+ home appliance
2114
+ home base
2115
+ home decor
2116
+ home interior
2117
+ home office
2118
+ home theater
2119
+ homework
2120
+ hummus
2121
+ honey
2122
+ beehive
2123
+ honeymoon
2124
+ hood
2125
+ hoodie
2126
+ hook
2127
+ jump
2128
+ horizon
2129
+ hornbill
2130
+ horned cow
2131
+ hornet
2132
+ horror
2133
+ horror film
2134
+ horse blanket
2135
+ horse cart
2136
+ horse farm
2137
+ horse ride
2138
+ horseback
2139
+ horseshoe
2140
+ hose
2141
+ hospital
2142
+ hospital bed
2143
+ hospital room
2144
+ host
2145
+ inn
2146
+ hot
2147
+ hot air balloon
2148
+ hot dog
2149
+ hot sauce
2150
+ hot spring
2151
+ hotel
2152
+ hotel lobby
2153
+ hotel room
2154
+ hotplate
2155
+ hourglass
2156
+ house
2157
+ house exterior
2158
+ houseplant
2159
+ hoverboard
2160
+ howler
2161
+ huddle
2162
+ hug
2163
+ hula hoop
2164
+ person
2165
+ humidifier
2166
+ hummingbird
2167
+ humpback whale
2168
+ hunt
2169
+ hunting lodge
2170
+ hurdle
2171
+ hurricane
2172
+ husky
2173
+ hut
2174
+ hyaena
2175
+ hybrid
2176
+ hydrangea
2177
+ hydrant
2178
+ seaplane
2179
+ ice
2180
+ ice bag
2181
+ polar bear
2182
+ ice cave
2183
+ icecream
2184
+ ice cream cone
2185
+ ice cream parlor
2186
+ ice cube
2187
+ ice floe
2188
+ ice hockey player
2189
+ ice hockey team
2190
+ lollipop
2191
+ ice maker
2192
+ rink
2193
+ ice sculpture
2194
+ ice shelf
2195
+ skate
2196
+ ice skating
2197
+ iceberg
2198
+ icicle
2199
+ icing
2200
+ icon
2201
+ id photo
2202
+ identity card
2203
+ igloo
2204
+ light
2205
+ iguana
2206
+ illuminate
2207
+ illustration
2208
+ image
2209
+ impala
2210
+ incense
2211
+ independence day
2212
+ individual
2213
+ indoor
2214
+ indoor rower
2215
+ induction cooker
2216
+ industrial area
2217
+ industry
2218
+ infantry
2219
+ inflatable boat
2220
+ information desk
2221
+ infrastructure
2222
+ ingredient
2223
+ inhalator
2224
+ injection
2225
+ injury
2226
+ ink
2227
+ inking pad
2228
+ inlet
2229
+ inscription
2230
+ insect
2231
+ install
2232
+ instrument
2233
+ insulated cup
2234
+ interaction
2235
+ interior design
2236
+ website
2237
+ intersection
2238
+ interview
2239
+ invertebrate
2240
+ invitation
2241
+ ipad
2242
+ iphone
2243
+ ipod
2244
+ iris
2245
+ iron
2246
+ ironing board
2247
+ irrigation system
2248
+ island
2249
+ islet
2250
+ isopod
2251
+ ivory
2252
+ ivy
2253
+ izakaya
2254
+ jack
2255
+ jackcrab
2256
+ jacket
2257
+ jacuzzi
2258
+ jade
2259
+ jaguar
2260
+ jail cell
2261
+ jam
2262
+ japanese garden
2263
+ jasmine
2264
+ jaw
2265
+ jay
2266
+ jazz
2267
+ jazz artist
2268
+ jazz fusion artist
2269
+ jeans
2270
+ jeep
2271
+ jelly
2272
+ jelly bean
2273
+ jellyfish
2274
+ jet
2275
+ motorboat
2276
+ jewel
2277
+ jewellery
2278
+ jewelry shop
2279
+ jigsaw puzzle
2280
+ rickshaw
2281
+ jockey
2282
+ jockey cap
2283
+ jog
2284
+ joint
2285
+ journalist
2286
+ joystick
2287
+ judge
2288
+ jug
2289
+ juggle
2290
+ juice
2291
+ juicer
2292
+ jujube
2293
+ jump rope
2294
+ jumpsuit
2295
+ jungle
2296
+ junkyard
2297
+ kale
2298
+ kaleidoscope
2299
+ kangaroo
2300
+ karaoke
2301
+ karate
2302
+ karting
2303
+ kasbah
2304
+ kayak
2305
+ kebab
2306
+ key
2307
+ keycard
2308
+ khaki
2309
+ kick
2310
+ kilt
2311
+ kimono
2312
+ kindergarden classroom
2313
+ kindergarten
2314
+ king
2315
+ king crab
2316
+ kiss
2317
+ kit
2318
+ kitchen
2319
+ kitchen cabinet
2320
+ kitchen counter
2321
+ kitchen floor
2322
+ kitchen hood
2323
+ kitchen island
2324
+ kitchen sink
2325
+ kitchen table
2326
+ kitchen utensil
2327
+ kitchen window
2328
+ kitchenware
2329
+ kite
2330
+ kiwi
2331
+ knee pad
2332
+ kneel
2333
+ knife
2334
+ rider
2335
+ knit
2336
+ knitting needle
2337
+ knob
2338
+ knocker
2339
+ knot
2340
+ koala
2341
+ koi
2342
+ ktv
2343
+ laboratory
2344
+ lab coat
2345
+ label
2346
+ labrador
2347
+ maze
2348
+ lace
2349
+ lace dress
2350
+ ladder
2351
+ ladle
2352
+ ladybird
2353
+ lagoon
2354
+ lake
2355
+ lake district
2356
+ lake house
2357
+ lakeshore
2358
+ lamb
2359
+ lamb chop
2360
+ lamp post
2361
+ lamp shade
2362
+ spear
2363
+ land
2364
+ land vehicle
2365
+ landfill
2366
+ landing
2367
+ landing deck
2368
+ landmark
2369
+ landscape
2370
+ landslide
2371
+ lanyard
2372
+ lantern
2373
+ lap
2374
+ laptop
2375
+ laptop keyboard
2376
+ larva
2377
+ lasagne
2378
+ laser
2379
+ lash
2380
+ lasso
2381
+ latch
2382
+ latex
2383
+ latte
2384
+ laugh
2385
+ launch
2386
+ launch event
2387
+ launch party
2388
+ laundromat
2389
+ laundry
2390
+ laundry basket
2391
+ laundry room
2392
+ lava
2393
+ lavender
2394
+ lawn
2395
+ lawn wedding
2396
+ lawyer
2397
+ lay
2398
+ lead
2399
+ lead singer
2400
+ lead to
2401
+ leader
2402
+ leak
2403
+ lean
2404
+ learn
2405
+ leash
2406
+ leather
2407
+ leather jacket
2408
+ leather shoe
2409
+ speech
2410
+ lecture hall
2411
+ lecture room
2412
+ ledge
2413
+ leftover
2414
+ leg
2415
+ legend
2416
+ legging
2417
+ legislative chamber
2418
+ lego
2419
+ legume
2420
+ lemon
2421
+ lemon juice
2422
+ lemonade
2423
+ lemur
2424
+ lens
2425
+ lens flare
2426
+ lentil
2427
+ leopard
2428
+ leotard
2429
+ tights
2430
+ leprechaun
2431
+ lesson
2432
+ letter
2433
+ mailbox
2434
+ letter logo
2435
+ lettering
2436
+ lettuce
2437
+ level
2438
+ library
2439
+ license
2440
+ license plate
2441
+ lichen
2442
+ lick
2443
+ lid
2444
+ lie
2445
+ life belt
2446
+ life jacket
2447
+ lifeboat
2448
+ lifeguard
2449
+ lift
2450
+ light fixture
2451
+ light show
2452
+ light switch
2453
+ lighting
2454
+ lightning
2455
+ lightning rod
2456
+ lilac
2457
+ lily
2458
+ limb
2459
+ lime
2460
+ limestone
2461
+ limo
2462
+ line
2463
+ line art
2464
+ line up
2465
+ linen
2466
+ liner
2467
+ lion
2468
+ lip balm
2469
+ lipstick
2470
+ liquid
2471
+ liquor store
2472
+ list
2473
+ litchi
2474
+ live
2475
+ livestock
2476
+ living room
2477
+ living space
2478
+ lizard
2479
+ load
2480
+ loading dock
2481
+ loafer
2482
+ hallway
2483
+ locate
2484
+ lock
2485
+ lock chamber
2486
+ locker
2487
+ loft
2488
+ log
2489
+ log cabin
2490
+ logo
2491
+ loki
2492
+ long hair
2493
+ longboard
2494
+ loom
2495
+ loop
2496
+ lose
2497
+ lottery
2498
+ lotus
2499
+ love
2500
+ loveseat
2501
+ luggage
2502
+ lumber
2503
+ lumberjack
2504
+ lunch
2505
+ lunch box
2506
+ lush
2507
+ luxury
2508
+ luxury yacht
2509
+ mac
2510
+ macadamia
2511
+ macaque
2512
+ macaroni
2513
+ macaw
2514
+ machete
2515
+ machine
2516
+ machine gun
2517
+ magazine
2518
+ magic
2519
+ magician
2520
+ magnet
2521
+ magnifying glass
2522
+ magnolia
2523
+ magpie
2524
+ mahjong
2525
+ mahout
2526
+ maid
2527
+ chain mail
2528
+ mail slot
2529
+ make
2530
+ makeover
2531
+ makeup artist
2532
+ makeup tool
2533
+ mallard
2534
+ mallard duck
2535
+ mallet
2536
+ mammal
2537
+ mammoth
2538
+ man
2539
+ management
2540
+ manager
2541
+ manatee
2542
+ mandala
2543
+ mandarin orange
2544
+ mandarine
2545
+ mane
2546
+ manga
2547
+ manger
2548
+ mango
2549
+ mangosteen
2550
+ mangrove
2551
+ manhattan
2552
+ manhole
2553
+ manhole cover
2554
+ manicure
2555
+ mannequin
2556
+ manor house
2557
+ mansion
2558
+ mantid
2559
+ mantle
2560
+ manufactured home
2561
+ manufacturing
2562
+ manuscript
2563
+ map
2564
+ maple
2565
+ maple leaf
2566
+ maple syrup
2567
+ maraca
2568
+ marathon
2569
+ marble
2570
+ march
2571
+ marching band
2572
+ mare
2573
+ marigold
2574
+ marine
2575
+ marine invertebrate
2576
+ marine mammal
2577
+ puppet
2578
+ mark
2579
+ market
2580
+ market square
2581
+ market stall
2582
+ marriage
2583
+ martial
2584
+ martial artist
2585
+ martial arts gym
2586
+ martini
2587
+ martini glass
2588
+ mascara
2589
+ mascot
2590
+ mashed potato
2591
+ masher
2592
+ mask
2593
+ massage
2594
+ mast
2595
+ mat
2596
+ matador
2597
+ match
2598
+ matchbox
2599
+ material
2600
+ mattress
2601
+ mausoleum
2602
+ maxi dress
2603
+ meal
2604
+ measuring cup
2605
+ measuring tape
2606
+ meat
2607
+ meatball
2608
+ mechanic
2609
+ mechanical fan
2610
+ medal
2611
+ media
2612
+ medical equipment
2613
+ medical image
2614
+ medical staff
2615
+ medicine cabinet
2616
+ medieval
2617
+ medina
2618
+ meditation
2619
+ meerkat
2620
+ meet
2621
+ melon
2622
+ monument
2623
+ menu
2624
+ mermaid
2625
+ net
2626
+ mess
2627
+ messenger bag
2628
+ metal
2629
+ metal artist
2630
+ metal detector
2631
+ meter
2632
+ mezzanine
2633
+ microphone
2634
+ microscope
2635
+ microwave
2636
+ midnight
2637
+ milestone
2638
+ military uniform
2639
+ milk
2640
+ milk can
2641
+ milk tea
2642
+ milkshake
2643
+ mill
2644
+ mine
2645
+ miner
2646
+ mineral
2647
+ mineral water
2648
+ miniskirt
2649
+ miniature
2650
+ minibus
2651
+ minister
2652
+ minivan
2653
+ mint
2654
+ mint candy
2655
+ mirror
2656
+ miss
2657
+ missile
2658
+ mission
2659
+ mistletoe
2660
+ mix
2661
+ mixer
2662
+ mixing bowl
2663
+ mixture
2664
+ moat
2665
+ mobility scooter
2666
+ model
2667
+ model car
2668
+ modern
2669
+ modern tower
2670
+ moisture
2671
+ mold
2672
+ molding
2673
+ mole
2674
+ monarch
2675
+ money
2676
+ monitor
2677
+ monk
2678
+ monkey
2679
+ monkey wrench
2680
+ monochrome
2681
+ monocycle
2682
+ monster truck
2683
+ moon
2684
+ moon cake
2685
+ moonlight
2686
+ moor
2687
+ moose
2688
+ swab
2689
+ moped
2690
+ morning
2691
+ morning fog
2692
+ morning light
2693
+ morning sun
2694
+ mortar
2695
+ mosaic
2696
+ mosque
2697
+ mosquito
2698
+ moss
2699
+ motel
2700
+ moth
2701
+ mother
2702
+ motherboard
2703
+ motif
2704
+ sport
2705
+ motor
2706
+ motorbike
2707
+ motorcycle
2708
+ motorcycle helmet
2709
+ motorcycle racer
2710
+ motorcyclist
2711
+ motorsport
2712
+ mound
2713
+ mountain
2714
+ mountain bike
2715
+ mountain biker
2716
+ mountain biking
2717
+ mountain gorilla
2718
+ mountain lake
2719
+ mountain landscape
2720
+ mountain pass
2721
+ mountain path
2722
+ mountain range
2723
+ mountain river
2724
+ mountain snowy
2725
+ mountain stream
2726
+ mountain view
2727
+ mountain village
2728
+ mountaineer
2729
+ mountaineering bag
2730
+ mouse
2731
+ mousepad
2732
+ mousetrap
2733
+ mouth
2734
+ mouthwash
2735
+ move
2736
+ movie poster
2737
+ movie ticket
2738
+ mower
2739
+ mp3 player
2740
+ mr
2741
+ mud
2742
+ muffin
2743
+ mug
2744
+ mulberry
2745
+ mulch
2746
+ mule
2747
+ municipality
2748
+ mural
2749
+ muscle
2750
+ muscle car
2751
+ museum
2752
+ mushroom
2753
+ music
2754
+ music festival
2755
+ music stool
2756
+ music studio
2757
+ music video performer
2758
+ musical keyboard
2759
+ musician
2760
+ mussel
2761
+ mustard
2762
+ mythology
2763
+ nacho
2764
+ nail polish
2765
+ nailfile
2766
+ nanny
2767
+ napkin
2768
+ narrow
2769
+ national flag
2770
+ nativity scene
2771
+ natural history museum
2772
+ nature
2773
+ nature reserve
2774
+ navigation
2775
+ navratri
2776
+ navy
2777
+ nebula
2778
+ neck
2779
+ neckband
2780
+ necklace
2781
+ neckline
2782
+ nectar
2783
+ nectarine
2784
+ needle
2785
+ neighbor
2786
+ neighbourhood
2787
+ neon
2788
+ neon light
2789
+ nerve
2790
+ nest
2791
+ new year
2792
+ newborn
2793
+ newfoundland
2794
+ newlywed
2795
+ news
2796
+ news conference
2797
+ newsstand
2798
+ night
2799
+ night market
2800
+ night sky
2801
+ night view
2802
+ nightclub
2803
+ nightstand
2804
+ noodle
2805
+ nose
2806
+ noseband
2807
+ note
2808
+ notebook
2809
+ notepad
2810
+ notepaper
2811
+ notice
2812
+ number icon
2813
+ nun
2814
+ nurse
2815
+ nursery
2816
+ nursing home
2817
+ nut
2818
+ nutcracker
2819
+ oak
2820
+ oak tree
2821
+ oar
2822
+ oasis
2823
+ oast house
2824
+ oatmeal
2825
+ oats
2826
+ obelisk
2827
+ observation tower
2828
+ observatory
2829
+ obstacle course
2830
+ sea
2831
+ octopus
2832
+ offer
2833
+ office
2834
+ office building
2835
+ office chair
2836
+ office cubicle
2837
+ office desk
2838
+ office supply
2839
+ office window
2840
+ officer
2841
+ official
2842
+ oil
2843
+ oil lamp
2844
+ oil painting
2845
+ oilrig
2846
+ okra
2847
+ old photo
2848
+ olive
2849
+ olive oil
2850
+ olive tree
2851
+ omelet
2852
+ onion
2853
+ onion ring
2854
+ opal
2855
+ open
2856
+ opening
2857
+ opening ceremony
2858
+ opera
2859
+ opera house
2860
+ operate
2861
+ operating room
2862
+ operation
2863
+ optical shop
2864
+ orangutan
2865
+ orange
2866
+ orange juice
2867
+ orange tree
2868
+ orangery
2869
+ orbit
2870
+ orchard
2871
+ orchestra pit
2872
+ orchid
2873
+ order
2874
+ organization
2875
+ origami
2876
+ ornament
2877
+ osprey
2878
+ ostrich
2879
+ otter
2880
+ out
2881
+ outcrop
2882
+ outdoor
2883
+ outhouse
2884
+ electric outlet
2885
+ outline
2886
+ oval
2887
+ oven
2888
+ overall
2889
+ overcoat
2890
+ overpass
2891
+ owl
2892
+ oyster
2893
+ teething ring
2894
+ pack
2895
+ package
2896
+ paddock
2897
+ police van
2898
+ padlock
2899
+ paella
2900
+ pagoda
2901
+ pain
2902
+ paint brush
2903
+ painter
2904
+ paisley bandanna
2905
+ palace
2906
+ palette
2907
+ paling
2908
+ pall
2909
+ palm tree
2910
+ pan
2911
+ pancake
2912
+ panda
2913
+ panel
2914
+ panorama
2915
+ pansy
2916
+ pant
2917
+ pantry
2918
+ pants
2919
+ pantyhose
2920
+ papaya
2921
+ paper
2922
+ paper bag
2923
+ paper cutter
2924
+ paper lantern
2925
+ paper plate
2926
+ paper towel
2927
+ paperback book
2928
+ paperweight
2929
+ parachute
2930
+ parade
2931
+ paradise
2932
+ parrot
2933
+ paramedic
2934
+ paraquet
2935
+ parasail
2936
+ paratrooper
2937
+ parchment
2938
+ parish
2939
+ park
2940
+ park bench
2941
+ parking
2942
+ parking garage
2943
+ parking meter
2944
+ parking sign
2945
+ parliament
2946
+ parsley
2947
+ participant
2948
+ partner
2949
+ partridge
2950
+ party
2951
+ party hat
2952
+ pass
2953
+ passage
2954
+ passbook
2955
+ passenger
2956
+ passenger ship
2957
+ passenger train
2958
+ passion fruit
2959
+ passport
2960
+ pasta
2961
+ paste
2962
+ pastry
2963
+ pasture
2964
+ patch
2965
+ patient
2966
+ pattern
2967
+ pavement
2968
+ pavilion
2969
+ paw
2970
+ pay
2971
+ payphone
2972
+ pea
2973
+ peace
2974
+ peach
2975
+ peacock
2976
+ peak
2977
+ peanut
2978
+ peanut butter
2979
+ pear
2980
+ pearl
2981
+ pebble
2982
+ pecan
2983
+ pedestrian
2984
+ pedestrian bridge
2985
+ pedestrian street
2986
+ peel
2987
+ peeler
2988
+ pegboard
2989
+ pegleg
2990
+ pelican
2991
+ pen
2992
+ penalty kick
2993
+ pencil
2994
+ pencil case
2995
+ pencil sharpener
2996
+ pencil skirt
2997
+ pendant
2998
+ pendulum
2999
+ penguin
3000
+ peninsula
3001
+ pennant
3002
+ penny
3003
+ piggy bank
3004
+ peony
3005
+ pepper
3006
+ pepper grinder
3007
+ peppercorn
3008
+ pepperoni
3009
+ perch
3010
+ perform
3011
+ performance
3012
+ performance arena
3013
+ perfume
3014
+ pergola
3015
+ persian cat
3016
+ persimmon
3017
+ personal care
3018
+ personal flotation device
3019
+ pest
3020
+ pet
3021
+ pet shop
3022
+ pet store
3023
+ petal
3024
+ petunia
3025
+ church bench
3026
+ pheasant
3027
+ phenomenon
3028
+ philosopher
3029
+ phone
3030
+ phonebook
3031
+ record player
3032
+ photo
3033
+ photo booth
3034
+ photo frame
3035
+ photography
3036
+ physicist
3037
+ physics laboratory
3038
+ pianist
3039
+ piano
3040
+ plectrum
3041
+ pick up
3042
+ pickle
3043
+ picnic
3044
+ picnic area
3045
+ picnic basket
3046
+ picnic table
3047
+ picture
3048
+ picture frame
3049
+ pie
3050
+ pigeon
3051
+ pilgrim
3052
+ tablet
3053
+ pillow
3054
+ pilot
3055
+ pilot boat
3056
+ pin
3057
+ pine
3058
+ pine cone
3059
+ pine forest
3060
+ pine nut
3061
+ pineapple
3062
+ table tennis table
3063
+ table tennis
3064
+ pink
3065
+ pint
3066
+ pipa
3067
+ pipe
3068
+ pipe bowl
3069
+ pirate
3070
+ pirate flag
3071
+ pirate ship
3072
+ pistachio
3073
+ ski slope
3074
+ pocket bread
3075
+ pitaya
3076
+ pitbull
3077
+ pitch
3078
+ pitcher
3079
+ pitcher plant
3080
+ pitchfork
3081
+ pizza
3082
+ pizza cutter
3083
+ pizza pan
3084
+ pizzeria
3085
+ placard
3086
+ place
3087
+ place mat
3088
+ plaid
3089
+ plain
3090
+ plan
3091
+ planet
3092
+ planet earth
3093
+ plank
3094
+ plant
3095
+ plantation
3096
+ planting
3097
+ plaque
3098
+ plaster
3099
+ plastic
3100
+ plasticine
3101
+ plateau
3102
+ platform
3103
+ platinum
3104
+ platter
3105
+ play
3106
+ play badminton
3107
+ play baseball
3108
+ play basketball
3109
+ play billiard
3110
+ play football
3111
+ play pong
3112
+ play tennis
3113
+ play volleyball
3114
+ player
3115
+ playground
3116
+ playhouse
3117
+ playing card
3118
+ playing chess
3119
+ playing golf
3120
+ playing mahjong
3121
+ playingfield
3122
+ playpen
3123
+ playroom
3124
+ plaza
3125
+ plier
3126
+ plot
3127
+ plow
3128
+ plug
3129
+ plug hat
3130
+ plum
3131
+ plumber
3132
+ plumbing fixture
3133
+ plume
3134
+ plywood
3135
+ pocket
3136
+ pocket watch
3137
+ pocketknife
3138
+ pod
3139
+ podium
3140
+ poetry
3141
+ poinsettia
3142
+ point
3143
+ pointer
3144
+ poker card
3145
+ poker chip
3146
+ poker table
3147
+ pole
3148
+ polecat
3149
+ police
3150
+ police car
3151
+ police dog
3152
+ police station
3153
+ politician
3154
+ polka dot
3155
+ pollen
3156
+ pollution
3157
+ polo
3158
+ polo neck
3159
+ polo shirt
3160
+ pomegranate
3161
+ pomeranian
3162
+ poncho
3163
+ pond
3164
+ ponytail
3165
+ poodle
3166
+ pool
3167
+ pop
3168
+ pop artist
3169
+ popcorn
3170
+ pope
3171
+ poppy
3172
+ porcelain
3173
+ porch
3174
+ pork
3175
+ porridge
3176
+ portable battery
3177
+ portal
3178
+ portfolio
3179
+ porthole
3180
+ portrait
3181
+ portrait session
3182
+ pose
3183
+ possum
3184
+ post
3185
+ post office
3186
+ stamp
3187
+ postcard
3188
+ poster
3189
+ poster page
3190
+ pot
3191
+ potato
3192
+ potato chip
3193
+ potato salad
3194
+ potholder
3195
+ potty
3196
+ pouch
3197
+ poultry
3198
+ pound
3199
+ pour
3200
+ powder
3201
+ power line
3202
+ power plugs and sockets
3203
+ power see
3204
+ power station
3205
+ practice
3206
+ Prague Castle
3207
+ prayer
3208
+ preacher
3209
+ premiere
3210
+ prescription
3211
+ show
3212
+ presentation
3213
+ president
3214
+ press room
3215
+ pressure cooker
3216
+ pretzel
3217
+ prince
3218
+ princess
3219
+ print
3220
+ printed page
3221
+ printer
3222
+ printing
3223
+ prison
3224
+ produce
3225
+ product
3226
+ profession
3227
+ professional
3228
+ professor
3229
+ project picture
3230
+ projection screen
3231
+ projector
3232
+ prom
3233
+ promenade
3234
+ propeller
3235
+ prophet
3236
+ proposal
3237
+ protective suit
3238
+ protest
3239
+ protester
3240
+ publication
3241
+ publicity portrait
3242
+ ice hockey
3243
+ pudding
3244
+ puddle
3245
+ puff
3246
+ puffin
3247
+ pug
3248
+ pull
3249
+ pulpit
3250
+ pulse
3251
+ pump
3252
+ pumpkin
3253
+ pumpkin pie
3254
+ pumpkin seed
3255
+ punch bag
3256
+ punch
3257
+ student
3258
+ purple
3259
+ push
3260
+ putt
3261
+ puzzle
3262
+ tower
3263
+ pyramid
3264
+ python
3265
+ qr code
3266
+ quail
3267
+ quarry
3268
+ quarter
3269
+ quartz
3270
+ queen
3271
+ quesadilla
3272
+ queue
3273
+ quiche
3274
+ quilt
3275
+ quilting
3276
+ quote
3277
+ rabbit
3278
+ raccoon
3279
+ race
3280
+ race track
3281
+ raceway
3282
+ race car
3283
+ racket
3284
+ radar
3285
+ radiator
3286
+ radio
3287
+ raft
3288
+ rag doll
3289
+ rail
3290
+ railcar
3291
+ railroad
3292
+ railroad bridge
3293
+ railway line
3294
+ railway station
3295
+ rain
3296
+ rain boot
3297
+ rainbow
3298
+ rainbow trout
3299
+ raincoat
3300
+ rainforest
3301
+ rainy
3302
+ raisin
3303
+ rake
3304
+ ram
3305
+ ramp
3306
+ rapeseed
3307
+ rapid
3308
+ rapper
3309
+ raspberry
3310
+ rat
3311
+ ratchet
3312
+ raven
3313
+ ravine
3314
+ ray
3315
+ razor
3316
+ razor blade
3317
+ read
3318
+ reading
3319
+ reamer
3320
+ rear
3321
+ rear light
3322
+ rear view
3323
+ rearview mirror
3324
+ receipt
3325
+ receive
3326
+ reception
3327
+ recipe
3328
+ record
3329
+ record producer
3330
+ recorder
3331
+ recording studio
3332
+ recreation room
3333
+ recreational vehicle
3334
+ rectangle
3335
+ recycling
3336
+ recycling bin
3337
+ red
3338
+ red carpet
3339
+ red flag
3340
+ red panda
3341
+ red wine
3342
+ redwood
3343
+ reed
3344
+ reef
3345
+ reel
3346
+ referee
3347
+ reflect
3348
+ reflection
3349
+ reflector
3350
+ register
3351
+ rein
3352
+ reindeer
3353
+ relax
3354
+ release
3355
+ relief
3356
+ religion
3357
+ religious
3358
+ relish
3359
+ remain
3360
+ remodel
3361
+ remote
3362
+ remove
3363
+ repair
3364
+ repair shop
3365
+ reptile
3366
+ rescue
3367
+ rescuer
3368
+ research
3369
+ researcher
3370
+ reservoir
3371
+ residence
3372
+ residential neighborhood
3373
+ resin
3374
+ resort
3375
+ resort town
3376
+ restaurant kitchen
3377
+ restaurant patio
3378
+ restroom
3379
+ retail
3380
+ retriever
3381
+ retro
3382
+ reveal
3383
+ rhinoceros
3384
+ rhododendron
3385
+ rib
3386
+ ribbon
3387
+ rice
3388
+ rice cooker
3389
+ rice field
3390
+ ride
3391
+ ridge
3392
+ riding
3393
+ rifle
3394
+ rim
3395
+ ring
3396
+ riot
3397
+ ripple
3398
+ rise
3399
+ rise building
3400
+ river
3401
+ river bank
3402
+ river boat
3403
+ river valley
3404
+ riverbed
3405
+ road
3406
+ road sign
3407
+ road trip
3408
+ roadside
3409
+ roast chicken
3410
+ robe
3411
+ robin
3412
+ robot
3413
+ stone
3414
+ rock arch
3415
+ rock artist
3416
+ rock band
3417
+ rock climber
3418
+ rock climbing
3419
+ rock concert
3420
+ rock face
3421
+ rock formation
3422
+ rocker
3423
+ rocket
3424
+ rocking chair
3425
+ rocky
3426
+ rodent
3427
+ rodeo
3428
+ rodeo arena
3429
+ roe
3430
+ roe deer
3431
+ roller
3432
+ coaster
3433
+ roller skate
3434
+ roller skates
3435
+ rolling pin
3436
+ romance
3437
+ romantic
3438
+ roof
3439
+ roof garden
3440
+ room
3441
+ room divider
3442
+ root
3443
+ root beer
3444
+ rope bridge
3445
+ rosary
3446
+ rose
3447
+ rosemary
3448
+ rosy cloud
3449
+ rottweiler
3450
+ round table
3451
+ router
3452
+ row
3453
+ rowan
3454
+ royal
3455
+ rubber stamp
3456
+ rubble
3457
+ rubik's cube
3458
+ ruby
3459
+ ruffle
3460
+ rugby
3461
+ rugby ball
3462
+ rugby player
3463
+ ruins
3464
+ ruler
3465
+ rum
3466
+ run
3467
+ runner
3468
+ running shoe
3469
+ rural
3470
+ rust
3471
+ rustic
3472
+ rye
3473
+ sack
3474
+ saddle
3475
+ saddlebag
3476
+ safari
3477
+ safe
3478
+ safety vest
3479
+ sage
3480
+ sail
3481
+ sailboat
3482
+ sailing
3483
+ sailor
3484
+ squirrel monkey
3485
+ sake
3486
+ salad
3487
+ salad bowl
3488
+ salamander
3489
+ salami
3490
+ sale
3491
+ salmon
3492
+ salon
3493
+ salsa
3494
+ salt
3495
+ salt and pepper shakers
3496
+ salt lake
3497
+ salt marsh
3498
+ salt shaker
3499
+ salute
3500
+ samoyed
3501
+ samurai
3502
+ sand
3503
+ sand bar
3504
+ sand box
3505
+ sand castle
3506
+ sand sculpture
3507
+ sandal
3508
+ sandwich
3509
+ sanitary napkin
3510
+ santa claus
3511
+ sapphire
3512
+ sardine
3513
+ sari
3514
+ sashimi
3515
+ satay
3516
+ satchel
3517
+ satellite
3518
+ satin
3519
+ sauce
3520
+ saucer
3521
+ sauna
3522
+ sausage
3523
+ savanna
3524
+ saw
3525
+ sawbuck
3526
+ sax
3527
+ saxophonist
3528
+ scaffold
3529
+ scale
3530
+ scale model
3531
+ scallop
3532
+ scar
3533
+ strawman
3534
+ scarf
3535
+ scene
3536
+ scenery
3537
+ schnauzer
3538
+ school
3539
+ school bus
3540
+ school uniform
3541
+ schoolhouse
3542
+ schooner
3543
+ science
3544
+ science fiction film
3545
+ science museum
3546
+ scientist
3547
+ scissors
3548
+ wall lamp
3549
+ scone
3550
+ scoop
3551
+ scooter
3552
+ score
3553
+ scoreboard
3554
+ scorpion
3555
+ scout
3556
+ scrambled egg
3557
+ scrap
3558
+ scraper
3559
+ scratch
3560
+ screen
3561
+ screen door
3562
+ screenshot
3563
+ screw
3564
+ screwdriver
3565
+ scroll
3566
+ scrub
3567
+ scrubbing brush
3568
+ sculptor
3569
+ sculpture
3570
+ sea cave
3571
+ sea ice
3572
+ sea lion
3573
+ sea turtle
3574
+ sea urchin
3575
+ seabass
3576
+ seabed
3577
+ seabird
3578
+ seafood
3579
+ seahorse
3580
+ seal
3581
+ sea view
3582
+ seashell
3583
+ seaside resort
3584
+ season
3585
+ seat
3586
+ seat belt
3587
+ seaweed
3588
+ secretary
3589
+ security
3590
+ sedan
3591
+ see
3592
+ seed
3593
+ seesaw
3594
+ segway
3595
+ selfie
3596
+ sell
3597
+ seminar
3598
+ sense
3599
+ sensor
3600
+ server
3601
+ server room
3602
+ service
3603
+ set
3604
+ sewing machine
3605
+ shadow
3606
+ shake
3607
+ shaker
3608
+ shampoo
3609
+ shape
3610
+ share
3611
+ shark
3612
+ sharpener
3613
+ sharpie
3614
+ shaver
3615
+ shaving cream
3616
+ shawl
3617
+ shear
3618
+ shears
3619
+ sheep
3620
+ sheet
3621
+ sheet music
3622
+ shelf
3623
+ shell
3624
+ shellfish
3625
+ shelter
3626
+ shelve
3627
+ shepherd
3628
+ sherbert
3629
+ shiba inu
3630
+ shine
3631
+ shipping
3632
+ shipping container
3633
+ shipwreck
3634
+ shipyard
3635
+ shirt
3636
+ shirtless
3637
+ shoal
3638
+ shoe
3639
+ shoe box
3640
+ shoe shop
3641
+ shoe tree
3642
+ shoot
3643
+ shooting basketball guard
3644
+ shop window
3645
+ shopfront
3646
+ shopper
3647
+ shopping
3648
+ shopping bag
3649
+ shopping basket
3650
+ shopping cart
3651
+ mall
3652
+ shopping street
3653
+ shore
3654
+ shoreline
3655
+ short
3656
+ short hair
3657
+ shorts
3658
+ shot glass
3659
+ shotgun
3660
+ shoulder
3661
+ shoulder bag
3662
+ shovel
3663
+ showcase
3664
+ shower
3665
+ shower cap
3666
+ shower curtain
3667
+ shower door
3668
+ shower head
3669
+ shredder
3670
+ shrew
3671
+ shrimp
3672
+ shrine
3673
+ shrub
3674
+ shutter
3675
+ siamese
3676
+ siberia
3677
+ sibling
3678
+ side
3679
+ side cabinet
3680
+ side dish
3681
+ sidecar
3682
+ sideline
3683
+ siding
3684
+ sign
3685
+ signage
3686
+ signal
3687
+ signature
3688
+ silk
3689
+ silk stocking
3690
+ silo
3691
+ silver
3692
+ silver medal
3693
+ silverware
3694
+ sing
3695
+ singe
3696
+ singer
3697
+ sink
3698
+ sip
3699
+ sit
3700
+ sitting
3701
+ skate park
3702
+ skateboard
3703
+ skateboarder
3704
+ skater
3705
+ skating rink
3706
+ skeleton
3707
+ sketch
3708
+ skewer
3709
+ ski
3710
+ ski boot
3711
+ ski equipment
3712
+ ski jacket
3713
+ ski lift
3714
+ ski pole
3715
+ ski resort
3716
+ snowboard
3717
+ skier
3718
+ skiing shoes
3719
+ skin
3720
+ skull
3721
+ skullcap
3722
+ sky
3723
+ sky tower
3724
+ skylight
3725
+ skyline
3726
+ skyscraper
3727
+ slalom
3728
+ slate
3729
+ sleigh
3730
+ sleep
3731
+ sleeping bag
3732
+ sleepwear
3733
+ sleeve
3734
+ slice
3735
+ slide
3736
+ slider
3737
+ sling
3738
+ slope
3739
+ slot
3740
+ slot machine
3741
+ sloth
3742
+ slow cooker
3743
+ slug
3744
+ slum
3745
+ smell
3746
+ smile
3747
+ smoke
3748
+ snack
3749
+ snail
3750
+ snake
3751
+ snapper
3752
+ snapshot
3753
+ snorkel
3754
+ snout
3755
+ snow
3756
+ snow leopard
3757
+ snow mountain
3758
+ snowball
3759
+ snowboarder
3760
+ snowfield
3761
+ snowflake
3762
+ snowman
3763
+ snowmobile
3764
+ snowplow
3765
+ snowshoe
3766
+ snowy
3767
+ soap
3768
+ soap bubble
3769
+ soap dispenser
3770
+ soccer goalkeeper
3771
+ socialite
3772
+ sock
3773
+ socket
3774
+ soda
3775
+ softball
3776
+ software
3777
+ solar battery
3778
+ soldier
3779
+ solo
3780
+ solution
3781
+ sombrero
3782
+ song
3783
+ sound
3784
+ soup
3785
+ soup bowl
3786
+ soupspoon
3787
+ sour cream
3788
+ souvenir
3789
+ soybean milk
3790
+ spa
3791
+ space
3792
+ space shuttle
3793
+ space station
3794
+ spacecraft
3795
+ spaghetti
3796
+ span
3797
+ wrench
3798
+ spark
3799
+ sparkle
3800
+ sparkler
3801
+ sparkling wine
3802
+ sparrow
3803
+ spatula
3804
+ speaker
3805
+ spectator
3806
+ speech bubble
3807
+ speed limit
3808
+ speed limit sign
3809
+ speedboat
3810
+ speedometer
3811
+ sphere
3812
+ spice
3813
+ spice rack
3814
+ spider
3815
+ spider web
3816
+ spike
3817
+ spin
3818
+ spinach
3819
+ spire
3820
+ splash
3821
+ sponge
3822
+ spoon
3823
+ sport association
3824
+ sport equipment
3825
+ sport team
3826
+ sports ball
3827
+ sports equipment
3828
+ sports meet
3829
+ sportswear
3830
+ dot
3831
+ spray
3832
+ spread
3833
+ spring
3834
+ spring roll
3835
+ sprinkle
3836
+ sprinkler
3837
+ sprout
3838
+ spruce
3839
+ spruce forest
3840
+ squad
3841
+ square
3842
+ squash
3843
+ squat
3844
+ squeeze
3845
+ squid
3846
+ squirrel
3847
+ water gun
3848
+ stab
3849
+ stable
3850
+ stack
3851
+ stadium
3852
+ staff
3853
+ stage
3854
+ stage light
3855
+ stagecoach
3856
+ stain
3857
+ stainless steel
3858
+ stair
3859
+ stairs
3860
+ stairwell
3861
+ stall
3862
+ stallion
3863
+ stand
3864
+ standing
3865
+ staple
3866
+ stapler
3867
+ star
3868
+ stare
3869
+ starfish
3870
+ starfruit
3871
+ starling
3872
+ state park
3873
+ state school
3874
+ station
3875
+ stationary bicycle
3876
+ stationery
3877
+ statue
3878
+ steak
3879
+ steak knife
3880
+ steam
3881
+ steam engine
3882
+ steam locomotive
3883
+ steam train
3884
+ steamed bread
3885
+ steel
3886
+ steering wheel
3887
+ stem
3888
+ stencil
3889
+ step stool
3890
+ stereo
3891
+ stethoscope
3892
+ stew
3893
+ stick
3894
+ stick insect
3895
+ sticker
3896
+ still life
3897
+ stilt
3898
+ stingray
3899
+ stir
3900
+ stirrer
3901
+ stirrup
3902
+ sew
3903
+ stock
3904
+ stocking
3905
+ stomach
3906
+ stone building
3907
+ stone carving
3908
+ stone house
3909
+ stone mill
3910
+ stool
3911
+ stop
3912
+ stop at
3913
+ stop light
3914
+ stop sign
3915
+ stop watch
3916
+ traffic light
3917
+ storage box
3918
+ storage room
3919
+ tank
3920
+ store
3921
+ storefront
3922
+ stork
3923
+ storm
3924
+ storm cloud
3925
+ stormy
3926
+ stove
3927
+ poker
3928
+ straddle
3929
+ strainer
3930
+ strait
3931
+ strap
3932
+ straw
3933
+ straw hat
3934
+ strawberry
3935
+ stream
3936
+ street art
3937
+ street artist
3938
+ street corner
3939
+ street dog
3940
+ street food
3941
+ street light
3942
+ street market
3943
+ street photography
3944
+ street scene
3945
+ street sign
3946
+ street vendor
3947
+ stretch
3948
+ stretcher
3949
+ strike
3950
+ striker
3951
+ string
3952
+ string cheese
3953
+ strip
3954
+ stripe
3955
+ stroll
3956
+ structure
3957
+ studio
3958
+ studio shot
3959
+ stuff
3960
+ stuffed animal
3961
+ stuffed toy
3962
+ stuffing
3963
+ stump
3964
+ stunning
3965
+ stunt
3966
+ stupa
3967
+ style
3968
+ stylus
3969
+ submarine
3970
+ submarine sandwich
3971
+ submarine water
3972
+ suburb
3973
+ subway
3974
+ subway station
3975
+ subwoofer
3976
+ succulent
3977
+ suede
3978
+ sugar
3979
+ sugar bowl
3980
+ sugar cane
3981
+ sugar cube
3982
+ suit
3983
+ suite
3984
+ summer
3985
+ summer evening
3986
+ summit
3987
+ sun
3988
+ sun hat
3989
+ sunbathe
3990
+ sunday
3991
+ sundial
3992
+ sunflower
3993
+ sunflower field
3994
+ sunflower seed
3995
+ sunglasses
3996
+ sunny
3997
+ sunrise
3998
+ sunset
3999
+ sunshade
4000
+ sunshine
4001
+ super bowl
4002
+ sports car
4003
+ superhero
4004
+ supermarket
4005
+ supermarket shelf
4006
+ supermodel
4007
+ supporter
4008
+ surf
4009
+ surface
4010
+ surfboard
4011
+ surfer
4012
+ surgeon
4013
+ surgery
4014
+ surround
4015
+ sushi
4016
+ sushi bar
4017
+ suspenders
4018
+ suspension
4019
+ suspension bridge
4020
+ suv
4021
+ swallow
4022
+ swallowtail butterfly
4023
+ swamp
4024
+ swan
4025
+ swan boat
4026
+ sweat pant
4027
+ sweatband
4028
+ sweater
4029
+ sweatshirt
4030
+ sweet
4031
+ sweet potato
4032
+ swim
4033
+ swim cap
4034
+ swimmer
4035
+ swimming hole
4036
+ swimming pool
4037
+ swing
4038
+ swing bridge
4039
+ swinge
4040
+ swirl
4041
+ switch
4042
+ swivel chair
4043
+ sword
4044
+ swordfish
4045
+ symbol
4046
+ symmetry
4047
+ synagogue
4048
+ syringe
4049
+ syrup
4050
+ system
4051
+ t shirt
4052
+ t-shirt
4053
+ tabasco sauce
4054
+ tabby
4055
+ table tennis racket
4056
+ table top
4057
+ tablecloth
4058
+ tablet computer
4059
+ tableware
4060
+ tachometer
4061
+ tackle
4062
+ taco
4063
+ tae kwon do
4064
+ tai chi
4065
+ tail
4066
+ tailor
4067
+ take
4068
+ takeoff
4069
+ talk
4070
+ tambourine
4071
+ tan
4072
+ tangerine
4073
+ tape
4074
+ tapestry
4075
+ tarmac
4076
+ taro
4077
+ tarp
4078
+ tart
4079
+ tassel
4080
+ taste
4081
+ tatami
4082
+ tattoo
4083
+ tattoo artist
4084
+ tavern
4085
+ tea
4086
+ tea bag
4087
+ tea party
4088
+ tea plantation
4089
+ tea pot
4090
+ tea set
4091
+ teach
4092
+ teacher
4093
+ teacup
4094
+ teal
4095
+ team photo
4096
+ team presentation
4097
+ tear
4098
+ technician
4099
+ technology
4100
+ teddy
4101
+ tee
4102
+ teenager
4103
+ telegraph pole
4104
+ zoom lens
4105
+ telescope
4106
+ television
4107
+ television camera
4108
+ television room
4109
+ television studio
4110
+ temperature
4111
+ temple
4112
+ tempura
4113
+ tennis
4114
+ tennis court
4115
+ tennis match
4116
+ tennis net
4117
+ tennis player
4118
+ tennis racket
4119
+ tent
4120
+ tequila
4121
+ terminal
4122
+ terrace
4123
+ terrain
4124
+ terrarium
4125
+ territory
4126
+ test
4127
+ test match
4128
+ test tube
4129
+ text
4130
+ text message
4131
+ textile
4132
+ texture
4133
+ thanksgiving
4134
+ thanksgiving dinner
4135
+ theater
4136
+ theatre actor
4137
+ therapy
4138
+ thermometer
4139
+ thermos
4140
+ thermos bottle
4141
+ thermostat
4142
+ thicket
4143
+ thimble
4144
+ thing
4145
+ thinking
4146
+ thistle
4147
+ throne
4148
+ throne room
4149
+ throw
4150
+ throw pillow
4151
+ thunder
4152
+ thunderstorm
4153
+ thyme
4154
+ tiara
4155
+ tick
4156
+ ticket
4157
+ ticket booth
4158
+ tide pool
4159
+ tie
4160
+ tiger
4161
+ tight
4162
+ tile
4163
+ tile flooring
4164
+ tile roof
4165
+ tile wall
4166
+ tin
4167
+ tinfoil
4168
+ tinsel
4169
+ tiramisu
4170
+ tire
4171
+ tissue
4172
+ toast
4173
+ toaster
4174
+ tobacco
4175
+ tobacco pipe
4176
+ toddler
4177
+ toe
4178
+ tofu
4179
+ toilet bowl
4180
+ toilet seat
4181
+ toiletry
4182
+ tokyo tower
4183
+ tomato
4184
+ tomato sauce
4185
+ tomato soup
4186
+ tomb
4187
+ tong
4188
+ tongs
4189
+ tool
4190
+ toolbox
4191
+ toothbrush
4192
+ toothpaste
4193
+ toothpick
4194
+ topiary garden
4195
+ topping
4196
+ torch
4197
+ tornado
4198
+ tortilla
4199
+ tortoise
4200
+ tote bag
4201
+ totem pole
4202
+ totoro
4203
+ toucan
4204
+ touch
4205
+ touchdown
4206
+ tour
4207
+ tour bus
4208
+ tour guide
4209
+ tourist
4210
+ tourist attraction
4211
+ tournament
4212
+ tow truck
4213
+ towel
4214
+ towel bar
4215
+ tower block
4216
+ tower bridge
4217
+ town
4218
+ town square
4219
+ toy
4220
+ toy car
4221
+ toy gun
4222
+ toyshop
4223
+ track
4224
+ tractor
4225
+ trade
4226
+ tradition
4227
+ traditional
4228
+ traffic
4229
+ traffic cone
4230
+ traffic congestion
4231
+ traffic jam
4232
+ traffic sign
4233
+ trail
4234
+ trailer
4235
+ trailer truck
4236
+ train
4237
+ train bridge
4238
+ train car
4239
+ train interior
4240
+ train track
4241
+ train window
4242
+ trainer
4243
+ training
4244
+ training bench
4245
+ training ground
4246
+ trolley
4247
+ trampoline
4248
+ transformer
4249
+ transparency
4250
+ travel
4251
+ tray
4252
+ treadmill
4253
+ treat
4254
+ tree
4255
+ tree branch
4256
+ tree farm
4257
+ tree frog
4258
+ tree house
4259
+ tree root
4260
+ tree trunk
4261
+ trial
4262
+ triangle
4263
+ triathlon
4264
+ tribe
4265
+ tributary
4266
+ trick
4267
+ tricycle
4268
+ trim
4269
+ trio
4270
+ tripod
4271
+ trombone
4272
+ troop
4273
+ trophy
4274
+ trophy cup
4275
+ tropic
4276
+ trout
4277
+ truck
4278
+ truck driver
4279
+ tub
4280
+ tube
4281
+ tugboat
4282
+ tulip
4283
+ tuna
4284
+ tundra
4285
+ tunnel
4286
+ turbine
4287
+ turkey
4288
+ turn
4289
+ turnip
4290
+ turquoise
4291
+ turret
4292
+ turtle
4293
+ tusk
4294
+ tv actor
4295
+ tv cabinet
4296
+ tv drama
4297
+ tv genre
4298
+ tv personality
4299
+ tv show
4300
+ tv sitcom
4301
+ tv tower
4302
+ twig
4303
+ twilight
4304
+ twin
4305
+ twine
4306
+ twist
4307
+ type
4308
+ type on
4309
+ typewriter
4310
+ ukulele
4311
+ ultraman
4312
+ umbrella
4313
+ underclothes
4314
+ underwater
4315
+ unicorn
4316
+ uniform
4317
+ universe
4318
+ university
4319
+ up
4320
+ urban
4321
+ urinal
4322
+ urn
4323
+ use
4324
+ utensil
4325
+ utility room
4326
+ vacuum
4327
+ valley
4328
+ valve
4329
+ vampire
4330
+ van
4331
+ vanilla
4332
+ vanity
4333
+ variety
4334
+ vase
4335
+ vault
4336
+ vector cartoon illustration
4337
+ vector icon
4338
+ vegetable
4339
+ vegetable garden
4340
+ vegetable market
4341
+ vegetation
4342
+ vehicle
4343
+ veil
4344
+ vein
4345
+ velvet
4346
+ vending machine
4347
+ vendor
4348
+ vent
4349
+ vespa
4350
+ vessel
4351
+ vest
4352
+ vet
4353
+ veteran
4354
+ veterinarians office
4355
+ viaduct
4356
+ video
4357
+ video camera
4358
+ video game
4359
+ videotape
4360
+ view mirror
4361
+ vigil
4362
+ villa
4363
+ village
4364
+ vine
4365
+ vinegar
4366
+ vineyard
4367
+ violence
4368
+ violet
4369
+ violin
4370
+ violinist
4371
+ violist
4372
+ vision
4373
+ visor
4374
+ vodka
4375
+ volcano
4376
+ volleyball
4377
+ volleyball court
4378
+ volleyball player
4379
+ volunteer
4380
+ voyage
4381
+ vulture
4382
+ waffle
4383
+ waffle iron
4384
+ wagon
4385
+ wagon wheel
4386
+ waist
4387
+ waiter
4388
+ waiting hall
4389
+ waiting room
4390
+ walk
4391
+ walking
4392
+ walking cane
4393
+ wall clock
4394
+ wallpaper
4395
+ walnut
4396
+ walrus
4397
+ war
4398
+ warehouse
4399
+ warm
4400
+ warning sign
4401
+ warrior
4402
+ warship
4403
+ warthog
4404
+ wash
4405
+ washer
4406
+ washing
4407
+ washing machine
4408
+ wasp
4409
+ waste
4410
+ waste container
4411
+ watch
4412
+ water
4413
+ water bird
4414
+ water buffalo
4415
+ water cooler
4416
+ water drop
4417
+ water feature
4418
+ water heater
4419
+ water level
4420
+ water lily
4421
+ water park
4422
+ water pipe
4423
+ water purifier
4424
+ water ski
4425
+ water sport
4426
+ water surface
4427
+ water tower
4428
+ watercolor
4429
+ watercolor illustration
4430
+ watercolor painting
4431
+ waterfall
4432
+ watering can
4433
+ watermark overlay stamp
4434
+ watermelon
4435
+ waterproof jacket
4436
+ waterway
4437
+ wave
4438
+ wax
4439
+ weapon
4440
+ wear
4441
+ weather
4442
+ vane
4443
+ web
4444
+ webcam
4445
+ wedding
4446
+ wedding ring
4447
+ wedding bouquet
4448
+ wedding cake
4449
+ wedding couple
4450
+ wedding invitation
4451
+ wedding party
4452
+ wedding photo
4453
+ wedding photographer
4454
+ wedding photography
4455
+ wedding reception
4456
+ wedge
4457
+ weed
4458
+ weight
4459
+ weight scale
4460
+ welder
4461
+ well
4462
+ western food
4463
+ western restaurant
4464
+ wet
4465
+ wet bar
4466
+ wet suit
4467
+ wetland
4468
+ wetsuit
4469
+ whale
4470
+ whale shark
4471
+ wheat
4472
+ wheat field
4473
+ wheel
4474
+ wheelchair
4475
+ wheelie
4476
+ whipped cream
4477
+ whisk
4478
+ whisker
4479
+ whiskey
4480
+ whistle
4481
+ white
4482
+ white house
4483
+ white wine
4484
+ whiteboard
4485
+ wicket
4486
+ wide
4487
+ wield
4488
+ wig
4489
+ Wii
4490
+ Wii controller
4491
+ wild
4492
+ wildebeest
4493
+ wildfire
4494
+ wildflower
4495
+ wildlife
4496
+ willow
4497
+ wind
4498
+ wind chime
4499
+ wind farm
4500
+ wind turbine
4501
+ windmill
4502
+ window
4503
+ window box
4504
+ window display
4505
+ window frame
4506
+ window screen
4507
+ window seat
4508
+ window sill
4509
+ wiper
4510
+ windshield
4511
+ windy
4512
+ wine bottle
4513
+ wine cooler
4514
+ wine cabinet
4515
+ wine cellar
4516
+ wine glass
4517
+ wine rack
4518
+ wine tasting
4519
+ winery
4520
+ wing
4521
+ winter
4522
+ winter melon
4523
+ winter morning
4524
+ winter scene
4525
+ winter sport
4526
+ winter storm
4527
+ wire
4528
+ wisteria
4529
+ witch
4530
+ witch hat
4531
+ wok
4532
+ wolf
4533
+ woman
4534
+ wood
4535
+ wood duck
4536
+ wood floor
4537
+ wood wall
4538
+ wood-burning stove
4539
+ wooden spoon
4540
+ woodland
4541
+ woodpecker
4542
+ woodworking plane
4543
+ wool
4544
+ job
4545
+ work card
4546
+ workbench
4547
+ worker
4548
+ workplace
4549
+ workshop
4550
+ world
4551
+ worm
4552
+ worship
4553
+ wound
4554
+ wrap
4555
+ wrap dress
4556
+ wrapping paper
4557
+ wrestle
4558
+ wrestler
4559
+ wrinkle
4560
+ wristband
4561
+ write
4562
+ writer
4563
+ writing
4564
+ writing brush
4565
+ writing desk
4566
+ yacht
4567
+ yak
4568
+ yard
4569
+ yellow
4570
+ yoga
4571
+ yoga mat
4572
+ yoghurt
4573
+ yoke
4574
+ yolk
4575
+ youth
4576
+ youth hostel
4577
+ yurt
4578
+ zebra
4579
+ zebra crossing
4580
+ zen garden
4581
+ zip
4582
+ zipper
4583
+ zombie
4584
+ zongzi
4585
+ zoo
data/ram_tag_list_chinese.txt ADDED
@@ -0,0 +1,4585 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 三维CG渲染
2
+ 3d眼镜
3
+ 算盘
4
+ 鲍鱼
5
+ 修道院
6
+ 肚子
7
+ 学院
8
+ 附件
9
+ 事故
10
+ 手风琴
11
+ 橡子
12
+ 丙烯颜料
13
+ 表演
14
+ 行动
15
+ 动作电影
16
+ 活动
17
+ 演员
18
+ 改编本
19
+ 添加
20
+ 胶带
21
+ 调整
22
+ 成人
23
+ 冒险
24
+ 广告
25
+ 天线
26
+ 有氧运动
27
+ 喷雾罐
28
+ 爆炸头
29
+ 农业
30
+ 帮助
31
+ 空调
32
+ 空调系统
33
+ 风向标
34
+ 飞机客舱
35
+ 飞机模型
36
+ 机场
37
+ 航线
38
+ 客机
39
+ 飞行员
40
+ 飞机
41
+ 飞机窗口
42
+ 机场
43
+ 机场跑道
44
+ 航站楼
45
+ 飞艇
46
+ 航展
47
+ 过道
48
+ 警报
49
+ 闹钟
50
+ 信天翁
51
+ 唱片
52
+ 唱片封面
53
+ 酒精
54
+ 壁龛
55
+ 水藻
56
+ 胡同/球道
57
+ 杏仁
58
+ 芦荟
59
+ 高山
60
+ 羊驼
61
+ 字母表
62
+ 德国牧羊犬
63
+ 圣坛
64
+ 琥珀
65
+ 救护车
66
+ 秃鹰
67
+ 美国短毛猫
68
+ 紫水晶
69
+ 圆形剧场
70
+ 扩音器
71
+ 游乐园
72
+ 游乐设施
73
+
74
+ 古老的
75
+ 海葵
76
+ 天使
77
+
78
+ 动物
79
+ 动物雕塑
80
+ 动物收容所
81
+ 动画片
82
+ 动画电影
83
+ 动画师
84
+ 动漫
85
+ 脚踝
86
+ 短袜
87
+ 周年庆
88
+ 风衣
89
+ 蚂蚁
90
+ 羚羊
91
+ 古董
92
+ 鹿角
93
+ 铁砧
94
+ 公寓
95
+
96
+ 应用程序
97
+ 应用图标
98
+ 出现
99
+ 外观
100
+ 开胃菜
101
+ 掌声
102
+ 苹果
103
+ 苹果汁
104
+ 苹果派
105
+ 苹果树
106
+ 苹果酱
107
+ 设备
108
+ 约定
109
+ 通道
110
+ 杏子
111
+ 围裙
112
+ 浅绿色
113
+ 水族馆
114
+ 观赏鱼
115
+ 渡槽
116
+ 游乐中心
117
+ 商场游戏机
118
+ 拱门
119
+ 拱桥
120
+ 考古现场
121
+ 射箭
122
+ 群岛
123
+ 建筑师
124
+ 建筑设计
125
+ 档案
126
+ 拱门
127
+ 地区
128
+ 竞技场
129
+ 争论
130
+ 手臂
131
+ 穿山甲
132
+ 臂章
133
+ 扶手椅
134
+ 衣柜
135
+ 盔甲
136
+ 军队
137
+ 军事基地
138
+ 坦克
139
+ 阵列
140
+ 逮捕
141
+ 箭头
142
+ 艺术
143
+ 艺术展
144
+ 美术馆
145
+ 艺术印刷品
146
+ 艺术学校
147
+ 艺术工作室
148
+ 艺术矢量插图
149
+ 洋蓟
150
+ 文章
151
+ 手工艺品
152
+ 艺术家
153
+ 艺术阁楼
154
+
155
+ 烟灰缸
156
+ 亚洲寺庙
157
+ 芦笋
158
+ 沥青道路
159
+ 组装
160
+ 集会
161
+ 生产流水线
162
+ 协会
163
+ 宇航员
164
+ 天文学家
165
+ 运动员
166
+ 运动
167
+ 地图集
168
+ 自助取款机
169
+ 大气层
170
+ 中庭
171
+ 连接
172
+ 战斗机
173
+ 参加
174
+ 吸引力
175
+ 全地形车
176
+ 茄子
177
+ 拍卖
178
+ 奥迪汽车
179
+ 音频
180
+ 礼堂
181
+ 极光
182
+ 作者
183
+ 汽车厂
184
+ 汽车修理工
185
+ 汽车零件
186
+ 车展
187
+ 汽车展厅
188
+ 汽车电池
189
+ 汽车制造
190
+ 汽车模型
191
+ 汽车
192
+ 秋天
193
+ 秋天的森林
194
+ 秋天的叶子
195
+ 秋天的公园
196
+ 秋天的树
197
+ 阿凡达
198
+ 林荫大道
199
+ 飞行员太阳镜
200
+ 牛油果
201
+ 奖品
202
+ 颁奖典礼
203
+ 获奖者
204
+
205
+ 斧头
206
+ 杜鹃花
207
+ 狒狒
208
+ 婴儿
209
+ 奶瓶
210
+ 婴儿车
211
+ 婴儿衣服
212
+ 小象
213
+ 婴儿食品
214
+ 婴儿座椅
215
+ 迎婴派对
216
+ 背后/后面
217
+ 背景
218
+ 背光
219
+ 背包
220
+ 后院
221
+ 培根
222
+ 徽章
223
+
224
+ 荒地
225
+ 羽毛球运动
226
+ 羽毛球拍
227
+ 袋子
228
+ 面包圈
229
+ 风笛
230
+ 法棍
231
+ 诱饵
232
+ 焙烤食品
233
+ 面包师
234
+ 面包店
235
+ 烘焙
236
+ 烤盘
237
+ 平衡
238
+ 平衡车
239
+ 阳台
240
+
241
+ 球池
242
+ 芭蕾舞女演员
243
+ 芭蕾舞
244
+ 芭蕾舞演员
245
+ 芭蕾舞裙
246
+ 气球
247
+ 气球拱门
248
+ 棒球手
249
+ 舞厅
250
+ 竹子
251
+ 竹林
252
+ 香蕉
253
+ 香蕉面包
254
+ 香蕉叶子
255
+ 香蕉树
256
+ 乐队
257
+ 创可贴
258
+ 绷带
259
+ 头巾
260
+ 束发带
261
+ 刘海
262
+ 手镯
263
+ 栏杆
264
+ 五弦琴
265
+ 银行
266
+ 银行卡
267
+ 银行金库
268
+ 纸币
269
+ 横幅/旗帜
270
+ 宴会
271
+ 宴会厅
272
+ 榕树
273
+ 包子
274
+ 洗礼
275
+ 酒吧
276
+ 条形码
277
+ 高脚凳
278
+ 烧烤
279
+ 烧烤架
280
+ 杠铃
281
+ 理发师
282
+ 理发店
283
+ 芭比娃娃
284
+ 驳船
285
+ 咖啡师
286
+ 树皮
287
+ 大麦
288
+ 谷仓
289
+ 仓鸮
290
+ 挡光板
291
+
292
+ 路障
293
+ 屏障
294
+ 手推车
295
+ 酒保
296
+ 棒球
297
+ 棒球基地
298
+ 棒球棒
299
+ 棒球帽
300
+ 棒球场
301
+ 棒球比赛
302
+ 棒球手套
303
+ 棒球投手
304
+ 棒球队
305
+ 棒球制服
306
+ 地下室
307
+ 罗勒
308
+ 水盆
309
+ 篮子
310
+ 篮子
311
+ 篮球
312
+ 篮球篮板
313
+ 篮球教练
314
+ 篮球场
315
+ 篮球比赛
316
+ 篮球框
317
+ 篮球运动员
318
+ 篮球馆
319
+ 篮球队
320
+ 贝斯
321
+ 低音吉他
322
+ 低音喇叭
323
+ 贝斯手
324
+ 球棒/球拍
325
+ 浴室
326
+ 水浴加热器
327
+ 浴垫
328
+ 浴巾
329
+ 泳装
330
+ 浴袍
331
+ 浴室
332
+ 浴室配件
333
+ 浴室柜
334
+ 浴室门
335
+ 浴室镜子
336
+ 浴室水槽
337
+ 卫生纸
338
+ 浴室窗户
339
+ 蝙蝠侠
340
+ 棒子
341
+ 接连猛打/击球员
342
+ 电池
343
+ 战斗
344
+ 战绳
345
+ 战舰
346
+ 海湾
347
+ 海湾大桥
348
+ 凸窗
349
+ 杨梅
350
+ 集市
351
+ 海滩
352
+ 沙滩球
353
+ 沙滩椅
354
+ 海滨别墅
355
+ 海滩小屋
356
+ 沙滩毛巾
357
+ 沙滩排球
358
+ 灯塔
359
+ 珠子
360
+ 比格犬
361
+ 鸟嘴
362
+ 烧杯
363
+ 横梁
364
+ 豆子
365
+ 豆袋椅
366
+ 豆袋
367
+
368
+ 幼熊
369
+ 胡子
370
+ 野兽
371
+ 击打/击败
372
+ 美丽的
373
+ 美丽
374
+ 美容院
375
+ 海狸
376
+
377
+ 床单
378
+ 床架
379
+ 卧室
380
+ 床上用品
381
+ 便盆
382
+ 卧室窗户
383
+ 床头灯
384
+ 蜜蜂
385
+ 山毛榉
386
+ 牛肉
387
+ 养蜂人
388
+ 蜂鸣器
389
+ 啤酒
390
+ 啤酒瓶
391
+ 啤酒罐
392
+ 啤酒花园
393
+ 啤酒杯
394
+ 啤酒馆
395
+ 甜菜
396
+ 甲虫
397
+ 米色
398
+ 时钟
399
+ 甜椒
400
+ 钟楼
401
+ 皮带
402
+ 皮带扣
403
+ 长凳
404
+ 弯曲
405
+ 孟加拉虎
406
+ 盒饭
407
+ 贝雷帽
408
+ 浆果
409
+ 停泊位
410
+ 饮料
411
+ 围嘴
412
+ 拌饭
413
+ 圣经
414
+ 比熊
415
+ 自行车
416
+ 自行车头盔
417
+ 自行车车轮
418
+ 自行车骑士
419
+ 坐浴盆
420
+ 大本钟
421
+ 自行车道
422
+ 自行车道
423
+ 自行车赛
424
+ 骑车
425
+ 比基尼
426
+ 比基尼上衣
427
+ 账单
428
+ 台球
429
+ 广告牌
430
+ 台球台
431
+ 垃圾箱
432
+ 活页夹
433
+ 双筒望远镜
434
+ 生物学实验室
435
+ 双翼飞机
436
+ 桦木
437
+ 桦树
438
+
439
+ 鸟池
440
+ 喂鸟器
441
+ 鸟舍
442
+ 鸟巢
443
+ 鸟池
444
+ 鸟笼
445
+ 出生
446
+ 生日
447
+ 生日蛋糕
448
+ 生日蜡烛
449
+ 生日贺卡
450
+ 生日聚会
451
+ 饼干
452
+ 主教
453
+ 野牛
454
+ 钻头
455
+
456
+ 黑色
457
+ 黑山羊
458
+ 黑莓
459
+ 乌鸦
460
+ 黑板
461
+ 铁匠
462
+ 叶片/刀片
463
+ 毯子/覆盖层
464
+ ��动外套
465
+ 看台
466
+ 搅拌机
467
+ 祝福
468
+ 窗帘
469
+ 眼罩
470
+ 闪光
471
+ 暴风雪
472
+
473
+ 博客
474
+
475
+ 开花
476
+
477
+ 女装衬衫
478
+
479
+ 吹风机
480
+ 河豚
481
+ 蓝色
482
+ 蓝色艺术家
483
+ 蓝松鸦
484
+ 蓝天
485
+ 蓝莓
486
+ 蓝知更鸟
487
+
488
+ 板子
489
+ 板擦
490
+ 棋盘游戏
491
+ 木板路
492
+
493
+ 船甲板
494
+ 船屋
495
+
496
+ 乘船
497
+ 浮标
498
+ 山猫
499
+ 躯干
500
+ 身体冲浪板
501
+ 健美运动员
502
+ 水煮鸡蛋
503
+ 锅炉
504
+ 饰扣式领带
505
+ 门闩
506
+ 炸弹
507
+ 轰炸机
508
+ 披肩榛鸡
509
+ 骨骼
510
+ 篝火
511
+ 阀盖
512
+ 盆景
513
+
514
+ 书籍封面
515
+ 书柜
516
+ 文件夹
517
+ 书签
518
+ 书架
519
+ 书店
520
+ 远程拾音器
521
+ 推动
522
+ 靴子
523
+ 边界
524
+ 边境牧羊犬
525
+ 植物园
526
+
527
+ 瓶盖
528
+ 开瓶器
529
+ 螺旋开瓶器
530
+ 三角梅
531
+ 巨石
532
+ 花束
533
+ 时装店
534
+ 精品酒店
535
+ 鞠躬/蝴蝶结
536
+ 领结
537
+ 弓形窗
538
+
539
+ 保龄球运动
540
+ 保龄球馆
541
+ 保龄球
542
+ 保龄球设备
543
+ 盒子
544
+ 箱形梁桥
545
+ 箱龟
546
+ 拳击手
547
+ 内裤
548
+ 拳击
549
+ 拳击手套
550
+ 拳击台
551
+ 男孩
552
+ 支撑物
553
+ 支架
554
+ 辫子
555
+ 大脑
556
+ 刹车
557
+ 刹车灯
558
+ 树枝
559
+ 商标
560
+ 白兰地
561
+ 黄铜
562
+ 黄铜牌匾
563
+ 面包
564
+ 面包箱
565
+ 休息
566
+ 早餐
567
+ 防浪堤
568
+ 胸部
569
+ 啤酒厂
570
+ 砖块
571
+ 砖建筑物
572
+
573
+ 砖块
574
+ 婚纱
575
+ 新娘
576
+ 新郎
577
+ 伴娘
578
+
579
+ 缰绳
580
+ 公文包
581
+ 明亮的
582
+ 边沿
583
+ 钻头
584
+ 广播
585
+ 西兰花
586
+ 青铜
587
+ 铜牌
588
+ 青铜雕塑
589
+ 青铜雕像
590
+ 胸针
591
+ 小溪
592
+ 扫帚
593
+ 肉汤
594
+ 棕色
595
+ 棕熊
596
+ 巧克力蛋糕
597
+ 早午餐
598
+ 浅黑肤色的女人
599
+ 刷子
600
+ 郊狼
601
+ 包菜
602
+ 气泡
603
+ 泡泡糖
604
+ 珍珠奶茶
605
+ 斗柜
606
+ 盾牌
607
+
608
+
609
+ 水牛
610
+ 自助餐
611
+ 昆虫
612
+ 建造
613
+ 建造者
614
+ 建筑
615
+ 积木
616
+ 建筑立面
617
+ 建筑材料
618
+
619
+
620
+ 斗牛犬
621
+ 子弹
622
+ 动车
623
+ 公告栏
624
+ 防弹背心
625
+ 斗牛
626
+ 扩音器
627
+ 斗牛场
628
+ 大黄蜂
629
+ 保险杠
630
+ 卷/地形起伏
631
+
632
+ 蹦极
633
+ 双层床
634
+ 地堡/击球
635
+ 兔子
636
+ 浮标
637
+ 书桌
638
+ 墓室
639
+ 燃烧
640
+ 玉米煎饼
641
+ 公交车
642
+ 公交车司机
643
+ 公交车内部
644
+ 公交车站
645
+ 公交车站
646
+ 公交车窗户
647
+ 灌木
648
+ 商业
649
+ 名片
650
+ 业务主管
651
+ 商务西装
652
+ 业务团队
653
+ 女商人
654
+ 商人
655
+ 半身像
656
+ 屠夫
657
+ 肉铺
658
+ 孤峰
659
+ 黄油
660
+ 奶油
661
+ 蝴蝶
662
+ 蝴蝶馆
663
+ 按钮
664
+ 梧桐树
665
+ 购买
666
+ 出租车
667
+ 小屋
668
+ 卷心菜
669
+ 小屋/机舱
670
+ 守车
671
+ 储藏柜
672
+ 橱柜
673
+ 电缆
674
+ 缆车
675
+ 仙人掌
676
+ 咖啡馆
677
+ 食堂
678
+ 笼子
679
+ 蛋糕
680
+ 蛋糕台
681
+ 计算器
682
+ 大锅
683
+ 日历
684
+ 小腿
685
+ 通话
686
+ 电话亭
687
+ 书法
688
+ 平静的
689
+ 摄像机
690
+ 骆驼
691
+ 相机
692
+ 相机镜头
693
+ 迷彩
694
+ 露营
695
+ 露营者
696
+ 篝火
697
+ 露营
698
+ 营地
699
+ 校园
700
+
701
+ 开罐器
702
+ 运河
703
+ 金丝雀
704
+ 癌症
705
+ 蜡烛
706
+ 烛台
707
+ 糖果
708
+ 块状糖
709
+ 柺杖糖
710
+ 糖果店
711
+ 拐杖
712
+ 罐子
713
+ 大炮
714
+ 树冠/顶棚
715
+ 四柱床
716
+ 香瓜
717
+ 悬臂桥
718
+ 帆布
719
+ 峡谷
720
+ 帽子
721
+ 斗篷
722
+ 科德角
723
+ 卡布奇诺
724
+ 胶囊
725
+ 队长
726
+ 捕获
727
+
728
+ 汽车经销商
729
+ 车门
730
+ 汽车内饰
731
+ 车标
732
+ 后视镜
733
+ 停车场
734
+ 汽车座椅
735
+ 车展
736
+ 洗车
737
+ 车窗
738
+ 焦糖
739
+ 卡片
740
+ 纸牌游戏
741
+ 纸板
742
+ 纸板盒
743
+ 羊毛衫
744
+ 红衣凤头鸟
745
+ 货物
746
+ 货运飞机
747
+ 货船
748
+ 加勒比
749
+ 康乃馨
750
+ 狂欢节
751
+ 食肉动物
752
+ 旋转木马
753
+ 鲤鱼
754
+ 木匠
755
+ 地毯
756
+ 拖鞋
757
+ 红雀
758
+ 长途客车
759
+ 斑点狗
760
+ 航空母舰
761
+ 胡萝卜
762
+ 胡萝卜蛋糕
763
+ 携带
764
+ 手推车
765
+ 纸箱/纸盒
766
+ 卡通
767
+ 卡通人物
768
+ 卡通插图
769
+ 卡通风格
770
+ 雕刻
771
+ 容器
772
+ 现金
773
+ 腰果
774
+ 赌场
775
+ 砂锅
776
+ 磁带
777
+ 盒式录音机
778
+ 石膏绷带
779
+ 铸造
780
+ 城堡
781
+
782
+ 猫窝
783
+ 猫粮
784
+ 猫器具
785
+ 猫架
786
+ 地下墓穴
787
+ 双体船
788
+ 美洲狮
789
+ 握着/抓着
790
+ 捕手
791
+ 毛毛虫
792
+ 鲶鱼
793
+ 教堂
794
+
795
+ 猫步
796
+ 走秀
797
+ 菜花
798
+ 洞穴
799
+ 鱼子酱
800
+ 光盘
801
+ CD播放器
802
+ 雪松
803
+ 天花板
804
+ 吊扇
805
+ 庆祝
806
+ 庆典
807
+ 名人
808
+ 芹菜
809
+ 大提琴
810
+ 手机
811
+ 水泥
812
+ 墓地
813
+ 中心装饰品
814
+ 蜈蚣
815
+ 陶瓷
816
+ 瓷砖
817
+ 麦片
818
+ 仪式
819
+ 证书
820
+ 链条
821
+ 链锯
822
+ 椅子
823
+ 升降椅
824
+ 躺椅
825
+ 木屋
826
+ 圣杯
827
+ 粉笔
828
+ 房间
829
+ 变色龙
830
+ 香槟酒
831
+ 香槟杯
832
+ 冠军
833
+ 锦标赛
834
+ 吊灯
835
+ 婴儿换尿布台
836
+ 通道
837
+ 皴裂处
838
+ 小教堂
839
+ 人物雕塑
840
+ 木炭
841
+ 充电
842
+ 充电器
843
+ 战车
844
+ 慈善机构
845
+ 慈善活动
846
+ 魅力
847
+ 图表
848
+ 追逐
849
+ 底盘
850
+ 检查/支票
851
+ 支票簿
852
+ 棋盘
853
+ 检查表
854
+ 欢呼声
855
+ 鼓励/啦啦队
856
+ 奶酪
857
+ 奶酪汉堡
858
+ 奶酪蛋糕
859
+ 猎豹
860
+ 厨师
861
+ 化合物
862
+ 化学家
863
+ 化学
864
+ 化学实验室
865
+ 旗袍
866
+ 樱桃
867
+ 樱花
868
+ 樱桃番茄
869
+ 樱桃树
870
+ 国际象棋
871
+ 栗子
872
+
873
+ 鸡胸肉
874
+ 鸡笼
875
+ 鸡肉沙拉
876
+ 鸡翅
877
+ 鹰嘴豆
878
+ 小衣橱
879
+ 吉娃娃
880
+ 孩子
881
+ 童星
882
+ 孩子的房间
883
+ 红番椒
884
+ 辣热狗
885
+ 烟囱
886
+ 黑猩猩
887
+ 瓷器
888
+ 白菜
889
+ 中国园林
890
+ 中国结
891
+ 月季
892
+ 中国塔
893
+ 炸薯条/炸薯条
894
+ 花栗鼠
895
+ 凿子
896
+ 巧克力
897
+ 巧克力棒
898
+ 巧克力蛋糕
899
+ 巧克力碎片
900
+ 巧克力饼干
901
+ 巧克力牛奶
902
+ 巧克力慕斯
903
+ 松露
904
+ 唱诗班
905
+ 厨房刀
906
+ 砧板
907
+ 筷子
908
+ 圣诞节
909
+ 圣诞球
910
+ 圣诞贺卡
911
+ 圣诞装饰
912
+ 圣诞晚宴
913
+ 平安夜
914
+ 圣诞帽
915
+ 圣诞灯
916
+ 圣诞市场
917
+ 圣诞装饰
918
+ 圣诞树
919
+ 菊花
920
+ 教堂
921
+ 教堂塔
922
+ 苹果酒
923
+ 雪茄
924
+ 雪茄盒
925
+ 香烟
926
+ 烟盒
927
+ 腰带
928
+ 电影院
929
+ 摄影师
930
+ 肉桂
931
+
932
+ 电路
933
+ 电路板
934
+ 马戏团
935
+ 水箱
936
+ 柑橘类水果
937
+ 城市
938
+ 城市公交
939
+ 市政厅
940
+ 城市夜景
941
+ 城市公园
942
+ 城市天际线
943
+ 城市广场
944
+ 城市街道
945
+ 城墙
946
+ 城市景观
947
+ 蛤蜊
948
+ 单���管
949
+ 扣子
950
+ 班级
951
+ 经典
952
+ 教室
953
+ 锁骨
954
+ 爪子
955
+ 黏土
956
+ 陶器
957
+ 清洁
958
+ 洁净室
959
+ 清洁工人
960
+ 清洁用品
961
+ 清晰的
962
+
963
+ 克莱门氏小柑橘
964
+ 客户端
965
+ 悬崖
966
+
967
+ 爬山
968
+ 登山者
969
+ 诊所
970
+ 夹子
971
+ 剪贴画
972
+ 剪贴板
973
+ 快速帆船
974
+ 君子兰
975
+ 斗篷
976
+ 木底鞋
977
+ 特写
978
+ 壁橱
979
+
980
+ 穿衣
981
+ 衣服
982
+ 晒衣夹
983
+ 晒衣绳
984
+ 服装店
985
+
986
+ 云雾森林
987
+ 多云
988
+ 三叶草
989
+ 小丑
990
+ 小丑鱼
991
+ 俱乐部
992
+ 离合器
993
+ 手拿包
994
+ 煤炭
995
+ 海岸
996
+ 外套
997
+ 衣帽架
998
+ 玉米
999
+ 公鸡
1000
+ 凤头鹦鹉
1001
+ 可卡犬
1002
+ 驾驶
1003
+ 蟑螂
1004
+ 鸡尾酒
1005
+ 小礼服
1006
+ 鸡尾酒调制器
1007
+ 鸡尾酒桌
1008
+ 可可
1009
+ 椰子
1010
+ 椰子树
1011
+ 咖啡
1012
+ 咖啡豆
1013
+ 咖啡杯
1014
+ 咖啡机
1015
+ 咖啡店
1016
+ 咖啡壶
1017
+ 棺材
1018
+ 法国白兰地
1019
+ 螺旋
1020
+ 硬币
1021
+ 可口可乐
1022
+ 滤器
1023
+ 冷的
1024
+ 卷心菜沙拉
1025
+ 合作
1026
+ 拼贴画
1027
+ 收藏品
1028
+ 大学生
1029
+ 牧羊犬
1030
+ 碰撞
1031
+ 颜色
1032
+ 涂色书
1033
+ 染色材料
1034
+ 矮种马
1035
+ 柱子
1036
+ 梳子
1037
+ 密码锁
1038
+ 喜剧演员
1039
+ 喜剧
1040
+ 喜剧电影
1041
+ 彗星
1042
+ 舒服
1043
+ 安慰食物
1044
+ 漫画书
1045
+ 漫画人物
1046
+ 连环画
1047
+ 指挥官
1048
+ 评论员
1049
+ 社区
1050
+ 通勤
1051
+ 公司
1052
+ 指南针
1053
+ 比赛
1054
+ 比赛
1055
+ 竞争者
1056
+ 作曲家
1057
+ 作文
1058
+ 堆肥
1059
+ 电脑
1060
+ 电脑机箱
1061
+ 电脑椅
1062
+ 电脑桌
1063
+ 键盘
1064
+ 计算机显示器
1065
+ 计算机房
1066
+ 电脑屏幕
1067
+ 机箱
1068
+ 概念车
1069
+ 音乐会
1070
+ 音乐厅
1071
+ 贝壳
1072
+ 混凝土
1073
+ 调味品
1074
+ 避孕套
1075
+ 独立产权的公寓
1076
+ 指挥
1077
+ 锥形物
1078
+ 会议
1079
+ 会议中心
1080
+ 会议厅
1081
+ 会议室
1082
+ 五彩纸屑
1083
+ 冲突
1084
+ 合流
1085
+ 连接
1086
+ 连接器
1087
+ 温室
1088
+ 星座
1089
+ 建筑工地
1090
+ 建筑工人
1091
+ 包含
1092
+ 容器
1093
+ 集装箱船
1094
+ 大陆
1095
+ 轮廓
1096
+ 合同
1097
+ 控制
1098
+ 控制塔
1099
+ 便利店
1100
+ 集会
1101
+ 交谈
1102
+ 转换器
1103
+ 可转换的
1104
+ 输送机
1105
+ 厨师/烹饪
1106
+ 烹饪
1107
+ 烹饪喷雾剂
1108
+ 炊具
1109
+ 凉的
1110
+ 冷却器
1111
+
1112
+ 一本/一册
1113
+ 珊瑚
1114
+ 珊瑚礁
1115
+ 粗绳
1116
+ 有线电话
1117
+
1118
+ 威尔士矮脚狗
1119
+ 瓶塞
1120
+ 软木板
1121
+ 鸬鹚
1122
+ 玉米
1123
+ 玉米田
1124
+ 玉米面包
1125
+ 角落
1126
+ 小号
1127
+ 飞檐
1128
+ 燕麦片
1129
+ 围栏
1130
+ 走廊
1131
+ 紧身衣
1132
+ 化妆品
1133
+ 化妆刷
1134
+ 化妆镜
1135
+ 角色扮演
1136
+ 服装
1137
+ 服装电影设计师
1138
+ 婴儿床
1139
+ 小屋
1140
+ 棉花
1141
+ 棉花糖
1142
+ 沙发
1143
+ 倒计时
1144
+ 柜台
1145
+ 台面
1146
+ 最佳乡村歌手
1147
+ 乡村别墅
1148
+ 乡村公路
1149
+ 乡村流行歌手
1150
+ 农村
1151
+ 双门小轿车
1152
+ 夫妇/两人/几个
1153
+ 情侣写真
1154
+ 小胡瓜
1155
+ 课程
1156
+ 球场
1157
+ 法院
1158
+ 院子
1159
+ 堂兄弟
1160
+ 工作服
1161
+ 奶牛
1162
+ 母牛的颈铃
1163
+ 牛仔
1164
+ 牛仔靴
1165
+ 牛仔帽
1166
+ 螃蟹
1167
+ 蟹肉
1168
+ 裂纹
1169
+ 摇篮
1170
+ 工艺
1171
+ 工匠
1172
+ 蔓越莓
1173
+ 起重机
1174
+ 黑纱
1175
+ 厕所
1176
+ 板条箱
1177
+ 火山口湖
1178
+ 龙虾
1179
+ 蜡笔
1180
+ 奶油乳酪
1181
+ 奶油罐
1182
+ 创建
1183
+ 生物
1184
+ 信用卡
1185
+ 新月形
1186
+ 新月形面包
1187
+ 山顶
1188
+ 全体船员
1189
+ 蟋蟀
1190
+ 板球用球
1191
+ 板球队
1192
+ 板球队员
1193
+ 钩边
1194
+ 克罗克电锅
1195
+ 鳄鱼
1196
+ 庄稼
1197
+ 露脐上衣
1198
+ 交叉
1199
+ 横木
1200
+ 十字路口
1201
+ 相声
1202
+ 人行横道
1203
+ 油煎面包块
1204
+ 乌鸦
1205
+ 撬棍
1206
+ 人群
1207
+ 拥挤的
1208
+ 皇冠
1209
+ 阴极射线管屏幕
1210
+ 耶稣受难像
1211
+ 巡游
1212
+ 游轮
1213
+ 巡洋艇
1214
+ 面包屑
1215
+ 压坏
1216
+ 拐杖
1217
+ 水晶
1218
+ 幼兽
1219
+ 立方体
1220
+ 黄瓜
1221
+ 球杆
1222
+ 袖口
1223
+ 袖扣
1224
+ 烹饪
1225
+ 农田
1226
+ 杯子
1227
+ 纸杯蛋糕
1228
+ 丘比特
1229
+ 马路牙子
1230
+ 旋度
1231
+ 卷发器
1232
+ 无籽葡萄干
1233
+ 货币
1234
+ 咖喱
1235
+ 窗帘
1236
+ 曲线
1237
+ 软垫
1238
+ 顾客
1239
+
1240
+ 餐具
1241
+ 自行车
1242
+ 骑自行车
1243
+ 龙卷风
1244
+ 汽缸
1245
+ 铙钹
1246
+ 柏树
1247
+ 柏树
1248
+ 达克斯猎狗
1249
+ 水仙花
1250
+ 匕首
1251
+ 大丽花
1252
+ 萝卜
1253
+ 乳制品
1254
+ 雏菊
1255
+ 大坝
1256
+ 损害
1257
+ 潮湿的
1258
+ 跳舞
1259
+ 舞池
1260
+ 舞蹈室
1261
+ 舞者
1262
+ 蒲公英
1263
+ 黑暗
1264
+ 黑暗
1265
+ 飞镖
1266
+ 圆靶
1267
+ 指示板
1268
+ 日期
1269
+ 女儿
1270
+ 黎明
1271
+ 天床上
1272
+ 日光
1273
+ 门栓
1274
+ 死亡
1275
+ 辩论
1276
+ 碎片
1277
+ 玻璃水瓶
1278
+ 甲板
1279
+ 双层巴士
1280
+ 装饰
1281
+ 装修/装饰
1282
+ 装饰画
1283
+ 鹿
1284
+ 后卫
1285
+
1286
+ 熟食
1287
+ 投递
1288
+ 拆迁
1289
+ 怪兽
1290
+ 演示
1291
+ 兽窝/休闲室
1292
+ 牛仔夹克
1293
+ 牙医
1294
+ 百货商店
1295
+ 抑郁症
1296
+ 德比
1297
+ 皮肤病
1298
+ 沙漠
1299
+ 沙漠公路
1300
+ 设计
1301
+ 设计师
1302
+ 桌子/表格
1303
+ 台灯
1304
+ 桌面
1305
+ 台式电脑
1306
+ 甜点
1307
+ 破坏
1308
+ 侦探
1309
+ 洗涤剂
1310
+ 露水
1311
+ 仪表盘
1312
+ 钻石
1313
+ 尿布
1314
+ 尿布包
1315
+ 杂志
1316
+
1317
+ 饮食
1318
+ 挖掘机
1319
+ 数字
1320
+ 数字时钟
1321
+ 莳萝
1322
+ 晚餐
1323
+ 小船
1324
+ 餐厅
1325
+ 晚宴
1326
+ 餐桌
1327
+ 恐龙
1328
+
1329
+ 文凭
1330
+ 指引
1331
+ 导演
1332
+ 尘埃
1333
+ 越野摩托车
1334
+ 泥土地
1335
+ 泥土路
1336
+ 泥路/土路
1337
+ 灾难
1338
+ 信徒
1339
+ 迪斯科舞厅
1340
+ 迪斯科灯秋
1341
+ 迪斯科舞厅
1342
+ 疾病
1343
+ 盘子
1344
+ 碟形天线
1345
+ 洗碗机
1346
+ 抹布
1347
+ 菜肴
1348
+ 洗碗液
1349
+ 迪斯尼乐园
1350
+ 自动售货机
1351
+ 展示
1352
+ 陈列窗
1353
+ 壕沟
1354
+ 潜水
1355
+ 潜水员
1356
+ 跳水板
1357
+ 纸杯
1358
+ 流行音乐播音员
1359
+ 杜宾犬
1360
+ 码头
1361
+ 医生
1362
+ 文件
1363
+ 纪录片
1364
+
1365
+ 狗窝
1366
+ 犬种
1367
+ 狗项圈
1368
+ 狗粮
1369
+ 狗窝
1370
+ 洋娃娃
1371
+ 美元
1372
+ 玩偶之家
1373
+ 洋娃娃
1374
+ 海豚
1375
+ 穹顶
1376
+ 住宅
1377
+ 多米诺骨牌
1378
+
1379
+ 甜甜圈
1380
+ 涂鸦
1381
+
1382
+ 门把手
1383
+ 受气包
1384
+ 门牌
1385
+ 门口
1386
+ 宿舍
1387
+ 面团
1388
+ 市中心
1389
+ 推土机
1390
+
1391
+
1392
+ 蜻蜓
1393
+ 排水沟
1394
+ 剧本
1395
+ 戏剧电影
1396
+
1397
+ 抽屉里
1398
+ 图画/画画
1399
+ 图钉
1400
+ 辫子
1401
+ 连衣裙/特定场合的服装
1402
+ 礼帽
1403
+ 正装衬衫
1404
+ 皮鞋
1405
+ 大礼服
1406
+ 梳妆台
1407
+ 更衣室
1408
+ 运球
1409
+ 漂移
1410
+ 浮木
1411
+
1412
+ 饮品/喝
1413
+ 饮用水
1414
+ 开车
1415
+ 司机
1416
+ 车道
1417
+ 无人机
1418
+ 水滴/下降
1419
+ 吊灯
1420
+ 滴管
1421
+ 干旱
1422
+ 药物
1423
+ 药店
1424
+
1425
+ 鼓手
1426
+ 鸡腿
1427
+ 干的
1428
+ 公爵夫人
1429
+ 鸭子
1430
+ 鸭嘴兽
1431
+ 小鸭子
1432
+ 布基胶带
1433
+ 伙计
1434
+ 二重唱
1435
+ 粗呢
1436
+ 独木舟
1437
+ 哑铃
1438
+ 饺子
1439
+ 沙丘
1440
+ 扣篮
1441
+ 榴莲
1442
+ 黄昏
1443
+ 灰尘
1444
+ 垃圾车
1445
+ 簸箕
1446
+ 羽绒被
1447
+ DVD
1448
+ 染料
1449
+
1450
+ 耳朵
1451
+ 御寒耳罩
1452
+ 耳机
1453
+ 耳塞
1454
+ 耳环
1455
+ 地震
1456
+ 画架
1457
+ 复活节
1458
+ 复活节兔子
1459
+ 复活节彩蛋
1460
+
1461
+ 餐厅
1462
+ 泡芙
1463
+ 日食
1464
+ 生态系统
1465
+ 编辑
1466
+ 教育
1467
+ 教育家
1468
+ 鳗鱼
1469
+
1470
+ 蛋卷
1471
+ 蛋挞
1472
+ 打蛋器
1473
+ 白鹭
1474
+ 埃菲尔铁塔
1475
+ 橡皮筋
1476
+ 上级
1477
+ 电椅
1478
+ 电钻
1479
+ 电工
1480
+
1481
+ 电子
1482
+ 电子器件
1483
+ 大象
1484
+ 高度图
1485
+ 电梯
1486
+ 电梯轿厢
1487
+ 电梯门
1488
+ 电梯大堂
1489
+ 电梯井
1490
+ 路堤
1491
+ 大使馆
1492
+ 装饰
1493
+ 灰烬
1494
+ 会徽
1495
+ 刺绣
1496
+ 翡翠
1497
+ 紧急
1498
+ 紧急服务
1499
+ 紧急车辆
1500
+ 情感
1501
+ 帝国大厦
1502
+ 搪瓷
1503
+ 外壳/围墙
1504
+ 茶几
1505
+ 能源
1506
+ 订婚
1507
+ 订婚戒指
1508
+ 引擎
1509
+ 机舱
1510
+ 工程师
1511
+ 工程
1512
+ 英国短毛猫
1513
+ 乐团
1514
+ 回车键
1515
+ 演艺人员
1516
+ 娱乐
1517
+ 娱乐中心
1518
+ 入口
1519
+ 入口大厅
1520
+ 信封
1521
+ 马术
1522
+ 设备
1523
+ 橡皮擦
1524
+ 二胡
1525
+ 侵蚀
1526
+ 自动扶梯
1527
+ 食用蜗牛
1528
+ 浓缩咖啡
1529
+ 房地产
1530
+ 河口
1531
+ 桉树
1532
+ 晚上
1533
+ 晚礼服
1534
+ 夜光
1535
+ 傍晚天空
1536
+ 晚上的太阳
1537
+ 事件
1538
+ 常绿的
1539
+ 母羊
1540
+ 挖掘
1541
+ 运动
1542
+ 排气罩
1543
+ 展览
1544
+ 出口
1545
+ 探险者
1546
+ 爆炸
1547
+ 延长线
1548
+ 灭火器
1549
+ 排气扇
1550
+ 挤压
1551
+ 眼睛
1552
+ 眼影
1553
+
1554
+ 眼线笔
1555
+ 布料
1556
+ 纺织品商店
1557
+ 外观
1558
+
1559
+ 脸部特写
1560
+ 蜜粉
1561
+ 毛巾
1562
+ 面巾纸架
1563
+ 设施
1564
+ 工厂
1565
+ 工厂车间
1566
+ 集市
1567
+ 露天市场
1568
+ 仙女
1569
+ 猎鹰
1570
+ 秋天
1571
+ 家庭
1572
+ 家庭轿车
1573
+ 全家福
1574
+ 家庭房
1575
+ 风扇/扇子
1576
+ 尖牙
1577
+ 农场
1578
+ 农民
1579
+ 农民市场
1580
+ 农舍
1581
+ 时尚
1582
+ 时尚配饰
1583
+ 时装设计师
1584
+ 时尚的女孩
1585
+ 时装插图
1586
+ 时装大片
1587
+ 时装模特
1588
+ 时装表演
1589
+ 快餐
1590
+ 西式快餐
1591
+ 父亲
1592
+ 水龙头
1593
+ 故障
1594
+ 动物
1595
+ 小鹿
1596
+ 传真
1597
+ 宴会
1598
+ 羽毛
1599
+ 软呢帽
1600
+ 饲料
1601
+ 一餐
1602
+ 饲养
1603
+ 喂养的椅子
1604
+ 猫科
1605
+ 美洲狮
1606
+ 栅栏
1607
+ 芬达
1608
+ 蕨类植物
1609
+ 雪貂
1610
+ 摩天轮
1611
+ 渡船
1612
+ 肥料
1613
+ 节日
1614
+ 纤维
1615
+ 小说
1616
+ 小说书
1617
+ 田野/场地/野外
1618
+ 田间道路
1619
+ 无花果
1620
+ 打架
1621
+ 花样滑冰运动员
1622
+ 小雕像
1623
+ 文件
1624
+ 档案照片
1625
+ 文件柜
1626
+ 填满
1627
+ 胶片相机
1628
+ 电影导演
1629
+ 电影格式
1630
+ 电影首映礼
1631
+ 电影制片人
1632
+ 拍摄
1633
+ 过滤器
1634
+
1635
+
1636
+ 终点线
1637
+ 冷杉
1638
+ 冷杉树
1639
+
1640
+ 火灾报警
1641
+ 消防部门
1642
+ 消防车
1643
+ 消防通道
1644
+ 消防水带
1645
+ 火坑
1646
+ 消防站
1647
+ 爆竹
1648
+ 消防队员
1649
+ 壁炉
1650
+ 烟花
1651
+ 烟花表演
1652
+ 急救箱
1653
+
1654
+ 鱼船
1655
+ 海鲜市场
1656
+ 鱼塘
1657
+ 鱼缸
1658
+ 渔夫
1659
+ 钓鱼
1660
+ 渔船
1661
+ 渔网
1662
+ 钓鱼
1663
+ 渔村
1664
+ 健身
1665
+ 健身课程
1666
+ 五个
1667
+ 固定装置
1668
+ 峡湾
1669
+ 国旗
1670
+ 旗杆
1671
+ 小薄片
1672
+ 火焰
1673
+ 火烈鸟
1674
+ 法兰绒
1675
+ 拍打
1676
+ 耀斑
1677
+ 闪光
1678
+ 烧瓶
1679
+
1680
+ 比目鱼
1681
+ 风味
1682
+ 跳蚤
1683
+ 跳蚤市场
1684
+ 舰队
1685
+ 飞行
1686
+ 空中乘务员
1687
+ 翻转
1688
+ 触发器
1689
+ 翻转图
1690
+ 浮动
1691
+
1692
+ 洪水
1693
+ 地板/地面
1694
+ 落地扇
1695
+ 脚垫
1696
+ 楼层平面图
1697
+ 落地窗
1698
+ 插花艺术
1699
+ 花店
1700
+ 牙线
1701
+ 面粉
1702
+ 流动
1703
+
1704
+ 花篮
1705
+ 花坛
1706
+ 花箱
1707
+ 花田
1708
+ 花童
1709
+ 花卉市场
1710
+ 流体
1711
+ 冲洗
1712
+ 长笛
1713
+
1714
+ 飞行钓鱼
1715
+ 传单
1716
+
1717
+ 泡沫
1718
+
1719
+ 多雾的
1720
+ 鹅肝酱
1721
+ 箔纸
1722
+ 折椅
1723
+ 树叶
1724
+ 民间艺术家
1725
+ 民间舞蹈
1726
+ 民间摇滚艺术家
1727
+ 方旦糖
1728
+ 火锅
1729
+ 圣洗池
1730
+ 食物
1731
+ 食用色素
1732
+ 美食广场
1733
+ 食品加工机
1734
+ 小吃摊
1735
+ 快餐车
1736
+ 桌上足球
1737
+
1738
+ 人行桥
1739
+ 足球
1740
+ 足球教练
1741
+ 大学橄榄球赛
1742
+ 足球比赛
1743
+ 足球场
1744
+ 足球比赛
1745
+ 橄榄球头盔
1746
+ 足球运动员
1747
+ 足球场
1748
+ 足球队
1749
+ 小路
1750
+ 脚印
1751
+ 脚踏板
1752
+ 台座
1753
+ 鞋子
1754
+ 故宫
1755
+ 浅滩
1756
+ 额头
1757
+ 森林
1758
+ 森林大火
1759
+ 森林地面
1760
+ 森林小路
1761
+ 森林公路
1762
+ 锻造
1763
+ 餐叉
1764
+ 叉车
1765
+ 表格
1766
+ 园林
1767
+ 队列/形成物
1768
+ F1方程式赛车
1769
+ 堡垒
1770
+ 碉堡
1771
+ 追逐
1772
+ 化石
1773
+ 粉底
1774
+ 喷泉
1775
+ 钢笔
1776
+ 狐狸
1777
+ 框架
1778
+ 雀斑
1779
+ 高速公路
1780
+ 卡车
1781
+ 法国
1782
+ 法国斗牛犬
1783
+ 薯条
1784
+ 法式吐司
1785
+ 化妆水
1786
+ 冰箱
1787
+ 炸鸡
1788
+ 煎蛋
1789
+ 炒饭
1790
+ 友谊
1791
+ 飞盘
1792
+ 青蛙
1793
+
1794
+ 结霜
1795
+ 严寒
1796
+ 结冰
1797
+ 水果
1798
+ 水果蛋糕
1799
+ 水果盘
1800
+ 水果市场
1801
+ 水果沙拉
1802
+ 水果摊
1803
+ 果树
1804
+ 水果商店
1805
+ 油炸食品
1806
+ 煎锅
1807
+ 软糖
1808
+ 燃料
1809
+ 吸烟罩
1810
+ 有趣的
1811
+ 葬礼
1812
+ 真菌
1813
+ 漏斗
1814
+ 毛皮衣服
1815
+ 毛皮大衣
1816
+ 家具
1817
+ 蒲团
1818
+ 小工具
1819
+ 枪口
1820
+ 星云/星系
1821
+ 美术馆
1822
+ 游戏
1823
+ 游戏棋盘
1824
+ 游戏手柄
1825
+ 火腿
1826
+ 团伙
1827
+ 车库
1828
+ 车库门
1829
+ 手工模型
1830
+ 垃圾
1831
+ 花园
1832
+ 花园芦笋
1833
+ 橡胶软管
1834
+ 花园蜘蛛
1835
+ 园丁
1836
+ 园艺
1837
+ 加菲猫
1838
+ 滴水嘴
1839
+ 花环
1840
+ 大蒜
1841
+ 衣服
1842
+ 气体
1843
+ 加油站
1844
+ 煤气炉
1845
+ 防毒面具
1846
+ 收集
1847
+ 聚集
1848
+ 测量仪器
1849
+ 露台
1850
+ 齿轮
1851
+ 壁虎
1852
+ 艺妓
1853
+ 凝胶
1854
+ 百货商店
1855
+ 发电机
1856
+ 天竺葵
1857
+ 幽灵
1858
+ 礼物
1859
+ 礼品袋
1860
+ 礼品篮
1861
+ 礼物盒
1862
+ 礼品卡
1863
+ 礼品商店
1864
+ 礼物包装
1865
+ 演唱会
1866
+ 杜松子酒
1867
+
1868
+ 姜饼
1869
+ 姜饼屋
1870
+ 银杏树
1871
+ 长颈鹿
1872
+ 女孩
1873
+
1874
+ 冰川
1875
+ 角斗士
1876
+ 玻璃珠
1877
+ 玻璃瓶
1878
+ 玻璃碗
1879
+ 玻璃箱
1880
+ 玻璃建筑
1881
+ 玻璃门
1882
+ 玻璃地板
1883
+ 玻璃屋
1884
+ 玻璃罐
1885
+ 玻璃板
1886
+ 玻璃桌子
1887
+ 玻璃花瓶
1888
+ 玻璃墙
1889
+ 玻璃窗
1890
+ 眼镜
1891
+ 光滑面
1892
+ 滑翔机
1893
+ 地球
1894
+ 手套
1895
+ 发光
1896
+ 汤圆
1897
+
1898
+ 袭击
1899
+ 球门
1900
+ 守门员
1901
+ 山羊
1902
+ 羊奶酪
1903
+ 戈壁
1904
+ 护目镜/墨镜
1905
+ 黄金
1906
+ 金牌
1907
+ 金门大桥
1908
+ 金毛猎犬
1909
+ 金鱼
1910
+ 高尔夫运动
1911
+ 高尔夫球帽
1912
+ 高尔夫球车
1913
+ 高尔夫球杆
1914
+ 高尔夫球场
1915
+ 高尔夫球手
1916
+
1917
+ 大猩猩
1918
+ 哥特式
1919
+ 葫芦
1920
+ 政府
1921
+ 政府机构
1922
+ 礼服
1923
+ 毕业生
1924
+ 毕业典礼
1925
+ 谷物
1926
+ 逆戟鲸
1927
+ 大奖赛
1928
+ 祖父
1929
+ 祖母
1930
+ 祖父母
1931
+ 花岗岩
1932
+ 格兰诺拉麦片
1933
+ 葡萄
1934
+ 西柚
1935
+ 葡萄酒
1936
+
1937
+ 蚱蜢
1938
+ 草原
1939
+ 长满草的
1940
+ 擦菜器
1941
+ 坟墓
1942
+ 碎石
1943
+ 墓���
1944
+ 肉汁
1945
+ 调味汁瓶
1946
+ 灰色
1947
+ 吃草
1948
+ 放牧
1949
+ 绿色
1950
+ 绿色植物
1951
+ 欢迎
1952
+ 问候
1953
+ 贺卡
1954
+ 灰狗
1955
+ 网格
1956
+ 筛子
1957
+ 烧烤架
1958
+ 格栅
1959
+ 烤鳗鱼
1960
+
1961
+ 研磨机
1962
+ 粗燕麦粉
1963
+ 杂货袋
1964
+ 洞穴
1965
+ 地松鼠
1966
+ 群体
1967
+ 合影
1968
+ 小树林
1969
+ 生长
1970
+ 牛油果酱
1971
+ 警卫
1972
+ 看门狗
1973
+ 宾馆
1974
+ 客房
1975
+ 指南
1976
+ 豚鼠
1977
+ 吉他
1978
+ 吉他手
1979
+ 海湾
1980
+ 海鸥
1981
+
1982
+ 高达
1983
+ 谒师所
1984
+ 古筝
1985
+ 健身房
1986
+ 体操运动员
1987
+ 栖息地
1988
+ 黑客
1989
+ 冰雹
1990
+ 头发
1991
+ 头发颜色
1992
+ 发胶
1993
+ 毛刷
1994
+ 发型
1995
+ 发夹
1996
+ 发网
1997
+ 发夹
1998
+ 发型
1999
+ 一半
2000
+ 礼堂
2001
+ 万圣节
2002
+ 万圣节服装
2003
+ 万圣节南瓜
2004
+ 露背装
2005
+ 汉堡
2006
+ 汉堡包
2007
+ 哈密瓜
2008
+ 锤子
2009
+ 吊床
2010
+ 阻碍
2011
+ 仓鼠
2012
+ 烘手机
2013
+ 放大镜
2014
+ 擦手巾
2015
+ 手提包
2016
+ 手球
2017
+ 手铐
2018
+ 手枪
2019
+ 手帕
2020
+ 把手
2021
+ 手锯
2022
+ 握手
2023
+ 倒立
2024
+ 手写
2025
+ 汉服
2026
+ 悬挂
2027
+ 飞机库
2028
+ 衣架
2029
+ 幸福
2030
+ 海港
2031
+ 斑海豹
2032
+ 硬摇滚艺术家
2033
+ 精装书
2034
+ 建筑工人
2035
+ 硬件
2036
+ 五金店
2037
+ 硬木
2038
+ 硬木地板
2039
+ 口琴
2040
+ 管风琴
2041
+ 羽管键琴
2042
+ 收获
2043
+ 收割机
2044
+ 坐垫/搁脚凳/草丛
2045
+ 帽子
2046
+ 帽盒
2047
+ 双簧管
2048
+ 山楂
2049
+ 干草
2050
+ 干草地
2051
+ 榛子
2052
+
2053
+ 主教练
2054
+ 大灯
2055
+ 床头板
2056
+ 头饰
2057
+ 海岬
2058
+ 总部
2059
+ 听力
2060
+ 心脏
2061
+ 心形
2062
+ 热能
2063
+ 加热器
2064
+ 帚石楠
2065
+ 树篱
2066
+ 刺猬
2067
+ 脚后跟
2068
+ 直升机
2069
+ 直升机机场
2070
+ 头盔
2071
+ 帮助
2072
+ 母鸡
2073
+ 指甲花
2074
+ 药草
2075
+ 兽群
2076
+ 寄居蟹
2077
+ 英雄
2078
+ 苍鹭
2079
+ 芙蓉花
2080
+ 芙蓉花
2081
+ 隐藏/隐蔽处
2082
+ 高杠
2083
+ 高跟鞋
2084
+ 高地
2085
+ 突出
2086
+ 徒步旅行
2087
+ 徒步旅行者
2088
+ 徒步靴
2089
+ 登山设备
2090
+ 山丘
2091
+ 丘陵地
2092
+ 别墅
2093
+ 山坡
2094
+ 印度教寺庙
2095
+ 铰链
2096
+ 臀部
2097
+ 嘻哈艺人
2098
+ 河马
2099
+ 历史学家
2100
+ 历史遗迹
2101
+ 历史
2102
+ 曲棍球
2103
+ 冰球馆
2104
+ 曲棍球比赛
2105
+ 曲棍球运动员
2106
+ 曲棍球棒
2107
+ 锄头
2108
+
2109
+ 假日
2110
+ 冬青树
2111
+ 海参
2112
+ 家/住宅
2113
+ 家用电器
2114
+ 基地
2115
+ 家居装饰
2116
+ 室内设计
2117
+ 内政部
2118
+ 家庭影院
2119
+ 家庭作业
2120
+ 鹰嘴豆泥
2121
+ 蜂蜜
2122
+ 蜂窝
2123
+ 蜜月
2124
+ 风帽
2125
+ 连帽衫
2126
+ 挂钩/勾住
2127
+
2128
+ 地平线
2129
+ 犀鸟
2130
+ 长角牛
2131
+ 大黄蜂
2132
+ 震惊
2133
+ 恐怖电影
2134
+ 马鞍褥
2135
+ 马车
2136
+ 马场
2137
+ 骑马
2138
+ 马背
2139
+ 马蹄铁
2140
+ 软管
2141
+ 医院
2142
+ 医院病床
2143
+ 病房
2144
+ 主持人
2145
+ 小旅馆
2146
+
2147
+ 热气球
2148
+ 热狗
2149
+ 辣椒酱
2150
+ 温泉
2151
+ 旅馆
2152
+ 酒店大堂
2153
+ 酒店房间
2154
+ 电炉
2155
+ 沙漏
2156
+ 房子
2157
+ 房子外部
2158
+ 室内植物
2159
+ 悬滑板
2160
+
2161
+ 蜷缩
2162
+ 拥抱
2163
+ 呼啦圈
2164
+
2165
+ 增湿器
2166
+ 蜂鸟
2167
+ 座头鲸
2168
+ 打猎
2169
+ 狩猎小屋
2170
+ 障碍
2171
+ 飓风
2172
+ 哈士奇
2173
+ 小屋
2174
+ 鬣狗
2175
+ 混合物
2176
+ 绣球花
2177
+ 消火栓
2178
+ 水上飞机
2179
+
2180
+ 冰袋
2181
+ 北极熊
2182
+ 冰洞
2183
+ 冰淇淋
2184
+ 冰淇淋蛋卷
2185
+ 冰淇淋商店
2186
+ 冰块
2187
+ 浮冰
2188
+ 冰球运动员
2189
+ 冰球队
2190
+ 棒棒糖
2191
+ 制冰机
2192
+ 溜冰场
2193
+ 冰雕
2194
+ 冰架
2195
+ 溜冰鞋
2196
+ 滑冰
2197
+ 冰山
2198
+ 冰柱
2199
+ 糖衣/酥皮
2200
+ 图标
2201
+ 身份证照片
2202
+ 身份证
2203
+ 冰屋
2204
+ 光/灯光/光线
2205
+ 鬣蜥蜴
2206
+ 照亮
2207
+ 插图
2208
+ 形象
2209
+ 黑斑羚
2210
+ 熏香
2211
+ 独立日
2212
+ 个人
2213
+ 室内
2214
+ 划船器
2215
+ 电磁炉
2216
+ 工业区
2217
+ 工业
2218
+ 步兵
2219
+ 充气艇
2220
+ 服务台
2221
+ 基础设施
2222
+ 成分
2223
+ 吸入器
2224
+ 注射
2225
+ 受伤
2226
+ 墨水
2227
+ 印泥
2228
+ 小湖湾
2229
+ 题词
2230
+ 昆虫
2231
+ 安装
2232
+ 乐器/器械
2233
+ 绝缘杯
2234
+ 互动
2235
+ 室内设计
2236
+ 网站
2237
+ 十字路口
2238
+ 面试
2239
+ 无脊椎动物
2240
+ 邀请
2241
+ 平板电脑
2242
+ 苹果手机
2243
+ 苹果音乐播放器
2244
+ 虹膜
2245
+
2246
+ 熨衣板
2247
+ 灌溉系统
2248
+
2249
+ 小岛
2250
+ 等足类动物
2251
+ 象牙
2252
+ 常青藤
2253
+ 居酒屋
2254
+ 千斤顶
2255
+ 帝王蟹/蟹
2256
+ 夹克衫
2257
+ 按摩浴缸
2258
+
2259
+ 美洲虎
2260
+ 监狱牢房
2261
+ 果酱
2262
+ 日式花园
2263
+ 茉莉花
2264
+ 下巴
2265
+ 松鸦
2266
+ 爵士乐
2267
+ 爵士乐艺术家
2268
+ 爵士融合艺术家
2269
+ 牛仔裤
2270
+ 吉普车
2271
+ 果冻
2272
+ 果冻豆
2273
+ 水母
2274
+ 喷气式飞机
2275
+ 摩托艇
2276
+ 珠宝
2277
+ 珠宝
2278
+ 珠宝店
2279
+ 拼图游戏
2280
+ 人力车
2281
+ 赛马骑师
2282
+ 赛马帽
2283
+ 慢跑
2284
+ 联合的
2285
+ 记者
2286
+ 操纵杆
2287
+ 法官
2288
+ 水壶
2289
+ 玩杂耍
2290
+ 果汁
2291
+ 榨汁器
2292
+ 枣子
2293
+ 跳绳
2294
+ 连身裤
2295
+ 丛林
2296
+ 废品堆放场
2297
+ 羽衣甘蓝
2298
+ 万花筒
2299
+ 袋鼠
2300
+ 卡拉ok
2301
+ 空手道
2302
+ 卡丁车运动
2303
+ 旧城区
2304
+ 皮船
2305
+ 烤肉串
2306
+ 按键/钥匙
2307
+ 门卡
2308
+ 卡其色
2309
+
2310
+ 苏格兰裙
2311
+ 和服
2312
+ 幼儿园教室
2313
+ 幼儿园
2314
+ 国王
2315
+ 帝王蟹
2316
+ 亲吻
2317
+ 工具包
2318
+ 厨房
2319
+ 厨房橱柜
2320
+ 厨房台面
2321
+ 厨房地板
2322
+ 厨房抽油烟机
2323
+ 厨房岛
2324
+ 厨房水槽
2325
+ 厨房桌子
2326
+ 厨房用具
2327
+ 厨房窗户
2328
+ 厨房用具
2329
+ 风筝
2330
+ 猕猴桃
2331
+ 护膝
2332
+ 跪下
2333
+ 餐刀
2334
+ 骑手
2335
+ 编织
2336
+ 编织针
2337
+ 球形把手
2338
+ 门环
2339
+
2340
+ 考拉
2341
+ 锦鲤
2342
+ ktv
2343
+ 实验室
2344
+ 实验室外套
2345
+ 标签
2346
+ 拉布拉多
2347
+ 迷宫
2348
+ 网眼织物
2349
+ 蕾丝连衣裙
2350
+ 梯子
2351
+ 长柄杓
2352
+ 瓢虫
2353
+ 环礁湖
2354
+ 湖泊
2355
+ 湖区
2356
+ 湖边小屋
2357
+ 湖岸
2358
+ 羊肉
2359
+ 羊排
2360
+ 灯柱
2361
+ 灯罩
2362
+
2363
+ 土地
2364
+ 陆地车辆
2365
+ 废物填埋
2366
+ 着陆
2367
+ 降落甲板
2368
+ 地标
2369
+ 风景
2370
+ 山崩
2371
+ 挂带
2372
+ 灯笼
2373
+ 腿/大腿
2374
+ 笔记本电脑
2375
+ 笔记本键盘
2376
+ 幼体
2377
+ 烤宽面条
2378
+ 激光
2379
+ 睫毛
2380
+ 套索
2381
+ 门闩
2382
+ 乳胶
2383
+ 拿铁咖啡
2384
+
2385
+ 发射
2386
+ 发布会
2387
+ 举办会议
2388
+ 自助洗衣店
2389
+ 洗衣房
2390
+ 洗衣篮
2391
+ 洗衣房
2392
+ 熔岩
2393
+ 薰衣草
2394
+ 草坪
2395
+ 草坪婚礼
2396
+ 律师
2397
+
2398
+ 引领
2399
+ 主唱
2400
+ 通向
2401
+ 领袖
2402
+ 泄漏
2403
+ 倾斜/倚靠
2404
+ 学习
2405
+ 皮带
2406
+ 皮革
2407
+ 皮夹克
2408
+ 皮鞋
2409
+ 演讲
2410
+ 演讲厅
2411
+ 教学室
2412
+ 窗台
2413
+ 剩饭
2414
+
2415
+ 传说
2416
+ 紧身裤/秋裤
2417
+ 立法院
2418
+ 乐高
2419
+ 豆类
2420
+ 柠檬
2421
+ 柠檬汁
2422
+ 柠檬水
2423
+ 狐猴
2424
+ 镜头
2425
+ 眩光
2426
+ 扁豆
2427
+
2428
+ 紧身连衣裤
2429
+ 紧身裤袜
2430
+ 小妖精
2431
+ 课程
2432
+ 信函
2433
+ 信箱
2434
+ 信的标志
2435
+ 刻字
2436
+ 生菜
2437
+ 水平
2438
+ 图书馆
2439
+ 许可证
2440
+ 车牌
2441
+ 地衣
2442
+
2443
+ 盖子
2444
+ 躺着
2445
+ 安全带
2446
+ 救生衣
2447
+ 救生艇
2448
+ 救生员
2449
+ 提起
2450
+ 灯具
2451
+ 灯光秀
2452
+ 电灯开关
2453
+ 照明/照明设备
2454
+ 闪电
2455
+ 避雷针
2456
+ 淡紫色
2457
+ 百合
2458
+ 肢体
2459
+ 石灰
2460
+ 石灰石
2461
+ 豪华轿车
2462
+ 线条
2463
+ 艺术线条
2464
+ 排队
2465
+ 亚麻
2466
+ 邮轮
2467
+ 狮子
2468
+ 润唇膏
2469
+ 口红
2470
+ 液体
2471
+ 酒类商店
2472
+ 列表
2473
+ 荔枝
2474
+ 生活
2475
+ 家畜
2476
+ 客厅
2477
+ 生活空间
2478
+ 蜥蜴
2479
+ 负载
2480
+ 装卸码头
2481
+ 游手好闲的人
2482
+ 走廊
2483
+ 定位
2484
+
2485
+ 闸室
2486
+ 储物柜
2487
+ 阁楼
2488
+ 原木
2489
+ 小木屋
2490
+ 标志
2491
+ 洛基
2492
+ 长头发
2493
+ 冲浪板
2494
+ 隐约显现/织布机
2495
+ 环状
2496
+ 遗失
2497
+ 彩票
2498
+ 莲花
2499
+
2500
+ 双人沙发
2501
+ 行李
2502
+ 木材
2503
+ 伐木工人
2504
+ 午餐
2505
+ 午餐盒
2506
+ 郁郁葱葱的
2507
+ 奢侈品
2508
+ 豪华游艇
2509
+ 雨衣
2510
+ 澳洲胡桃
2511
+ 短尾猿
2512
+ 通心粉
2513
+ 金刚鹦鹉
2514
+ 弯刀
2515
+ 机器
2516
+ 机枪
2517
+ 杂志
2518
+ 魔法
2519
+ 魔术师
2520
+ 磁铁
2521
+ 放大镜
2522
+ 木兰花
2523
+ 喜鹊
2524
+ 麻将
2525
+ 象夫
2526
+ 女仆
2527
+ 邮件
2528
+ 邮件槽
2529
+ 制作
2530
+ 改造
2531
+ 化妆师
2532
+ 化妆工具
2533
+ 野鸭
2534
+ 野鸭
2535
+ 槌棒
2536
+ 哺乳动物
2537
+ 猛犸象
2538
+ 男人
2539
+ 管理
2540
+ 经理
2541
+ 海牛
2542
+ 曼荼罗
2543
+ 橘子
2544
+ 普通话
2545
+ 鬃毛
2546
+ 漫画
2547
+ 食槽
2548
+ 芒果
2549
+ 山竹果
2550
+ 红树林
2551
+ 曼哈顿
2552
+ 检修孔
2553
+ 井盖
2554
+ 修指甲
2555
+ 人体模型
2556
+ 庄园主宅
2557
+ 大厦
2558
+ 螳螂
2559
+ 地幔
2560
+ 活动房层
2561
+ 制造业
2562
+ 手稿
2563
+ 地图
2564
+ 枫木
2565
+ 枫叶
2566
+ 枫糖浆
2567
+ 沙球
2568
+ 马拉松
2569
+ 大理石
2570
+ 行进
2571
+ 行进乐队
2572
+ 母马
2573
+ 金盏花
2574
+ 水兵
2575
+ 海洋无脊椎动物
2576
+ 海洋哺乳动物
2577
+ 木偶
2578
+ 标志
2579
+ 集市
2580
+ 市场广场
2581
+ 市场摊位
2582
+ 结婚
2583
+ 武术
2584
+ 武术家
2585
+ 武术馆
2586
+ 马提尼
2587
+ 马丁尼酒杯
2588
+ 睫毛膏
2589
+ 吉祥物
2590
+ 土豆泥
2591
+ 搅碎机
2592
+ 面具/口罩
2593
+ 按摩
2594
+ 桅杆
2595
+ 地垫
2596
+ 斗牛士
2597
+ 比赛
2598
+ 火柴盒
2599
+ 衣料
2600
+ 床垫
2601
+ 陵墓
2602
+ 长裙
2603
+ 一餐
2604
+ 量杯
2605
+ 卷尺
2606
+ 肉类
2607
+ 肉丸
2608
+ 机械师
2609
+ 机械风扇
2610
+ 奖牌
2611
+ 媒体
2612
+ 医疗设备
2613
+ 医学图像
2614
+ 医务人员
2615
+ 医药箱
2616
+ 中世纪的
2617
+ 麦地那市
2618
+ 冥想
2619
+ 猫鼬
2620
+ 赛事
2621
+ 香瓜
2622
+ 纪念碑
2623
+ 菜单
2624
+ 美人鱼
2625
+
2626
+ 肮脏
2627
+ 信使袋
2628
+ 金属
2629
+ 金属艺术家
2630
+ 金属探测器
2631
+ 计量器
2632
+ 中层楼
2633
+ 麦克风
2634
+ 显微镜
2635
+ 微波炉
2636
+ 午夜
2637
+ 里程碑
2638
+ 军装
2639
+ 牛奶
2640
+ 牛奶罐
2641
+ 奶茶
2642
+ 奶昔
2643
+ 磨坊
2644
+ 矿井
2645
+ 矿工
2646
+ 矿物质
2647
+ 矿泉水
2648
+ 迷你
2649
+ 微缩模型
2650
+ 面包车
2651
+ 部长
2652
+ 小型货车
2653
+ 薄荷
2654
+ 薄荷糖
2655
+ 镜子
2656
+ 小姐
2657
+ 投掷物
2658
+ 任务
2659
+ 槲寄生
2660
+ 混合
2661
+ 搅拌机
2662
+ 搅拌碗
2663
+ 混合物
2664
+ 护城河
2665
+ 电动踏板车
2666
+ 模型/模特
2667
+ 汽车模型
2668
+ 现代
2669
+ 现代大厦
2670
+ 潮湿
2671
+ 模具
2672
+ 模具
2673
+ 鼹鼠
2674
+ 君主
2675
+
2676
+ 监控器
2677
+ 和尚
2678
+ 猴子
2679
+ 活动扳手
2680
+ 黑白照片
2681
+ 独轮脚踏车
2682
+ 怪物卡车
2683
+ 月亮
2684
+ 月饼
2685
+ 月光
2686
+ 沼泽
2687
+ 驼鹿
2688
+ 拖把
2689
+ 助力车
2690
+ 早晨
2691
+ 晨雾
2692
+ 晨光
2693
+ 朝阳
2694
+ 砂浆
2695
+ 马赛克
2696
+ 清真寺
2697
+ 蚊子
2698
+ 藓类植物
2699
+ 汽车旅馆
2700
+
2701
+ 母亲
2702
+ 主板
2703
+ 主题
2704
+ 动作
2705
+ 电动机
2706
+ 摩托车
2707
+ 摩托车
2708
+ 摩托车头盔
2709
+ 摩托车赛车手
2710
+ 骑摩托车的人
2711
+ 赛车运动
2712
+ 土堆
2713
+
2714
+ 山地自行车
2715
+ 山地自行车员
2716
+ 山地自行车运动
2717
+ 山地大猩猩
2718
+ 山湖
2719
+ 山景观
2720
+ 山口
2721
+ 山路
2722
+ 山脉
2723
+ 山区河流
2724
+ 山雪
2725
+ 山间溪流
2726
+ 山景城
2727
+ 山村
2728
+ 登山者
2729
+ 登山包
2730
+ 鼠标/鼠
2731
+ 鼠标垫
2732
+ 捕鼠器
2733
+
2734
+ 漱口水
2735
+ 移动
2736
+ 电影海报
2737
+ 电影票
2738
+ 割草机
2739
+ mp3播放器
2740
+ 先生
2741
+
2742
+ 松饼
2743
+ 马克杯
2744
+ 桑树
2745
+ 覆盖物
2746
+ 骡子
2747
+ 直辖市
2748
+ 壁画
2749
+ 肌肉
2750
+ 肌肉车
2751
+ 博物馆
2752
+ 蘑菇
2753
+ 音乐
2754
+ 音乐节
2755
+ 音乐凳子
2756
+ 音乐工作室
2757
+ 音乐录影带表演者
2758
+ 音乐键盘
2759
+ 音乐家
2760
+ 贻贝
2761
+ 芥末
2762
+ 神话
2763
+ 烤干酪辣味玉米片
2764
+ 指甲油
2765
+ 指甲锉
2766
+ 保姆
2767
+ 餐巾
2768
+ 狭窄的
2769
+ 国旗
2770
+ 基督诞生的场景
2771
+ 自然历史博物馆
2772
+ 自然
2773
+ 自然保护区
2774
+ 导航
2775
+ 九夜节
2776
+ 海军
2777
+ 星云
2778
+ 脖子
2779
+ 围颈带/领口
2780
+ 项链
2781
+ 领口
2782
+ 花蜜
2783
+ 油桃
2784
+ 针状物
2785
+ 邻居
2786
+ 与某处邻近的地区
2787
+ 霓虹灯
2788
+ 霓虹灯
2789
+ 神经
2790
+
2791
+ 新年
2792
+ 新生的
2793
+ 纽芬兰
2794
+ 新婚
2795
+ 新闻
2796
+ 记者招待会
2797
+ 报摊
2798
+ 晚上
2799
+ 夜市
2800
+ 夜空
2801
+ 夜景
2802
+ 夜总会
2803
+ 床头柜
2804
+ 面条
2805
+ 鼻子
2806
+ 鼻羁
2807
+ 注解
2808
+ 笔记本
2809
+ 记事本
2810
+ 信纸
2811
+ 公告
2812
+ 数字图标
2813
+ 修女
2814
+ 护士
2815
+ 托儿所
2816
+ 养老院
2817
+ 螺母
2818
+ 胡桃夹子
2819
+ 橡木
2820
+ 橡树
2821
+
2822
+ 绿洲
2823
+ 烘干室
2824
+ 燕麦片
2825
+ 燕麦
2826
+ 方尖塔
2827
+ 观察塔
2828
+ 天文台
2829
+ 超越障碍训练场
2830
+ 海洋
2831
+ 章鱼
2832
+ 提供
2833
+ 办公室
2834
+ 办公大楼
2835
+ 办公椅
2836
+ 办公室隔间
2837
+ 办公桌
2838
+ 办公用品
2839
+ 办公室的窗户
2840
+ 军官
2841
+ 行政官员
2842
+ 石油
2843
+ 油灯
2844
+ 油画
2845
+ 石油钻台
2846
+ 秋葵
2847
+ 老照片
2848
+ 橄榄
2849
+ 橄榄油
2850
+ 橄榄树
2851
+ 煎蛋卷
2852
+ 洋葱
2853
+ 洋葱圈
2854
+ 蛋白石
2855
+ 开阔的/张开
2856
+ 开始
2857
+ 开幕式
2858
+ 歌剧
2859
+ 歌剧院
2860
+ 操作
2861
+ 手术室
2862
+ 操作
2863
+ 眼镜店
2864
+ 猩猩
2865
+ 橙子/橙色
2866
+ 橙汁
2867
+ 橙树
2868
+ 橘园
2869
+ 轨道
2870
+ 果园
2871
+ 乐池
2872
+ 兰花
2873
+ 订单
2874
+ 组织
2875
+ 折纸
2876
+ 点缀
2877
+ 鱼鹰
2878
+ 鸵鸟
2879
+ 水獭
2880
+ 外面的
2881
+ 露头
2882
+ 户外
2883
+ 厕所
2884
+ 电源插头
2885
+ 大纲
2886
+ ��圆形
2887
+ 烤箱
2888
+ 整体
2889
+ 大衣
2890
+ 天桥
2891
+ 猫头鹰
2892
+ 牡蛎
2893
+ 橡皮环
2894
+ 包裹
2895
+ 包/包装/包裹
2896
+ 围场
2897
+ 警车
2898
+ 挂锁
2899
+ 肉菜饭
2900
+ 宝塔
2901
+ 疼痛
2902
+ 油漆刷
2903
+ 画家
2904
+ 佩斯利印花大手帕
2905
+ 宫殿
2906
+ 调色板
2907
+ 栅栏
2908
+ 棺罩
2909
+ 棕榈树
2910
+ 平底锅
2911
+ 煎饼
2912
+ 熊猫
2913
+ 面板
2914
+ 全景
2915
+ 三色堇
2916
+ 喘息
2917
+ 储藏室
2918
+ 裤子
2919
+ 连裤袜
2920
+ 木瓜
2921
+
2922
+ 纸袋
2923
+ 切纸机
2924
+ 纸灯笼
2925
+ 纸盘子
2926
+ 纸巾
2927
+ 平装书
2928
+ 压纸器
2929
+ 降落伞
2930
+ 游行
2931
+ 天堂
2932
+ 鹦鹉
2933
+ 护理人员
2934
+ 长尾小鹦鹉
2935
+ 滑翔伞
2936
+ 伞兵
2937
+ 羊皮纸
2938
+ 教区
2939
+ 公园
2940
+ 公园长椅
2941
+ 停车
2942
+ 停车场
2943
+ 停车费
2944
+ 停车标志
2945
+ 议会
2946
+ 欧芹/香菜
2947
+ 参与者
2948
+ 合作伙伴
2949
+ 帕特里奇
2950
+ 聚会
2951
+ 派对帽
2952
+ 通过
2953
+ 通道
2954
+ 存折
2955
+ 乘客
2956
+ 客船
2957
+ 旅客列车
2958
+ 百香果
2959
+ 护照
2960
+ 面食
2961
+ 粘贴
2962
+ 糕点
2963
+ 牧场
2964
+ 补丁
2965
+ 病人
2966
+ 图案/款式
2967
+ 人行道/硬路面
2968
+ 大帐篷
2969
+ 爪子
2970
+ 支付
2971
+ 付费电话
2972
+ 豌豆
2973
+ 和平
2974
+ 桃子
2975
+ 孔雀
2976
+ 山峰/尖顶
2977
+ 花生
2978
+ 花生酱
2979
+
2980
+ 珍珠
2981
+ 卵石
2982
+ 山核桃
2983
+ 行人
2984
+ 人行天桥
2985
+ 步行街
2986
+ 果皮
2987
+ 削皮器
2988
+ 小钉板
2989
+ 木质腿
2990
+ 鹈鹕
2991
+ 笔/围栏
2992
+ 点球
2993
+ 铅笔
2994
+ 铅笔盒
2995
+ 卷笔刀
2996
+ 铅笔裙
2997
+ 吊坠
2998
+ 钟摆
2999
+ 企鹅
3000
+ 半岛
3001
+ 锦标旗
3002
+ 便士
3003
+ 储蓄罐
3004
+ 牡丹
3005
+ 胡椒/辣椒
3006
+ 胡椒研磨机
3007
+ 胡椒子
3008
+ 意大利辣香肠
3009
+ 栖息/鲈鱼
3010
+ 表演
3011
+ 表演
3012
+ 表演舞台
3013
+ 香水
3014
+ 绿廊
3015
+ 波斯猫
3016
+ 柿子
3017
+ 个人护理
3018
+ 个人漂浮装置
3019
+ 害虫
3020
+ 宠物
3021
+ 宠物店
3022
+ 宠物店
3023
+ 花瓣
3024
+ 佩妮
3025
+ 教堂的长椅
3026
+ 野鸡
3027
+ 现象
3028
+ 哲学家
3029
+ 电话
3030
+ 电话簿
3031
+ 留声机
3032
+ 照片
3033
+ 照相亭
3034
+ 相框
3035
+ 摄影
3036
+ 物理学家
3037
+ 物理实验室
3038
+ 钢琴家
3039
+ 钢琴
3040
+ 选择
3041
+ 捡起
3042
+ 泡菜
3043
+ 野餐
3044
+ 野餐区
3045
+ 野餐篮
3046
+ 野餐桌
3047
+ 图片
3048
+ 相框
3049
+ 馅饼
3050
+ 鸽子
3051
+ 朝圣者
3052
+ 药片
3053
+ 枕头
3054
+ 飞行员
3055
+ 领航艇
3056
+ 别针
3057
+ 松树
3058
+ 松果
3059
+ 松林
3060
+ 松子
3061
+ 菠萝
3062
+ 乒乓球桌
3063
+ 乒乓球
3064
+ 粉色
3065
+ 一品脱的量
3066
+ 琵琶
3067
+ 管子
3068
+ 管碗
3069
+ 海盗
3070
+ 海盗旗
3071
+ 海盗船
3072
+ 阿月浑子
3073
+ 滑雪场
3074
+ 口袋里的面包
3075
+ 火龙果
3076
+ 斗牛犬
3077
+ 球场
3078
+ 大水罐
3079
+ 猪笼草
3080
+ 干草叉
3081
+ 披萨
3082
+ 披萨刀
3083
+ 比萨锅
3084
+ 披萨店
3085
+ 招牌
3086
+ 地方
3087
+ 餐具垫
3088
+ 格子
3089
+ 平原
3090
+ 示意图
3091
+ 行星
3092
+ 行星地球
3093
+ 厚木板
3094
+ 植物
3095
+ 种植园
3096
+ 种植
3097
+ 匾额
3098
+ 石膏
3099
+ 塑料
3100
+ 橡皮泥
3101
+ 高原
3102
+ 平台
3103
+ 白金
3104
+ 大浅盘
3105
+ 玩/演奏/运动
3106
+ 打羽毛球
3107
+ 打棒球
3108
+ 打篮球
3109
+ 玩台球
3110
+ 踢足球
3111
+ 玩乒乓球
3112
+ 打网球
3113
+ 打排球
3114
+ 选手/运动员
3115
+ 操场
3116
+ 剧场
3117
+ 扑克牌
3118
+ 下棋
3119
+ 打高尔夫球
3120
+ 打麻将
3121
+ 运动场
3122
+ 护栏
3123
+ 游戏室
3124
+ 广场
3125
+ 钳子
3126
+ 故事情节
3127
+
3128
+ 插头
3129
+ 插头帽
3130
+ 李子
3131
+ 水管工
3132
+ 卫生洁具
3133
+ 羽毛
3134
+ 夹板
3135
+ 口袋
3136
+ 怀表
3137
+ 随身小折刀
3138
+ 圆荚体
3139
+ 乐队指挥台
3140
+ 诗歌
3141
+ 一品红
3142
+ 指/朝向
3143
+ 指针
3144
+ 扑克卡
3145
+ 筹码
3146
+ 扑克表
3147
+ 杆/柱
3148
+ 臭猫
3149
+ 警察
3150
+ 警车
3151
+ 警犬
3152
+ 警察局
3153
+ 政治家
3154
+ 圆点
3155
+ 花粉
3156
+ 污染
3157
+ 马球
3158
+ 马球领
3159
+ 马球衬衫
3160
+ 石榴
3161
+ 波美拉尼亚的
3162
+ 雨披
3163
+ 池塘
3164
+ 马尾辫
3165
+ 贵宾犬
3166
+
3167
+ 流行
3168
+ 流行艺术家
3169
+ 爆米花
3170
+ 教皇
3171
+ 罂粟
3172
+
3173
+ 玄关
3174
+ 猪肉
3175
+
3176
+ 便携式电池
3177
+ 门户网站
3178
+ 投资组合
3179
+ 汽门
3180
+ 肖像
3181
+ 肖像会话
3182
+ 摆姿势拍照
3183
+ 负鼠
3184
+ 帖子
3185
+ 邮局
3186
+ 邮票
3187
+ 明信片
3188
+ 海报
3189
+ 海报页
3190
+ 锅/罐/陶盆
3191
+ 土豆
3192
+ 土豆片
3193
+ 土豆沙拉
3194
+ 布垫子
3195
+ 便壶
3196
+
3197
+ 家禽
3198
+ 英镑
3199
+ 倾泻
3200
+ 粉末
3201
+ 电源线
3202
+ 电源插头及插座
3203
+ 权力看
3204
+ 电站
3205
+ 练习
3206
+ 布拉格城堡
3207
+ 祈祷
3208
+ 牧师
3209
+ 首映
3210
+ 处方
3211
+ 显示
3212
+ 演讲
3213
+ 总统
3214
+ 新闻发布室
3215
+ 高压锅
3216
+ 椒盐卷饼
3217
+ 王子
3218
+ 公主
3219
+ 打印
3220
+ 打印页面
3221
+ 打印机
3222
+ 印刷
3223
+ 监狱
3224
+ 农产品/生产
3225
+ 产品
3226
+ 职业
3227
+ 专业的
3228
+ 教授
3229
+ 项目图片
3230
+ 投影屏幕
3231
+ 投影仪
3232
+ 毕业舞会
3233
+ 散步
3234
+ 螺旋桨
3235
+ 先知
3236
+ 建议
3237
+ 防护服
3238
+ 抗议
3239
+ 抗议者
3240
+ 出版
3241
+ 宣传画像
3242
+ 冰上曲棍球
3243
+ 布丁
3244
+ 水坑
3245
+ 泡芙
3246
+ 角嘴海雀
3247
+ 哈巴狗
3248
+
3249
+ 讲坛
3250
+ 脉冲
3251
+
3252
+ 南瓜
3253
+ 南瓜饼
3254
+ 南瓜种子
3255
+ 拳击吊袋
3256
+ 拳头猛击/穿孔
3257
+ 学生
3258
+ 紫色
3259
+
3260
+ 轻轻一击
3261
+ 谜题
3262
+
3263
+ 金字塔
3264
+ 大蟒
3265
+ 二维码
3266
+ 鹌鹑
3267
+ 采石场
3268
+ 季度
3269
+ 石英
3270
+ 女王
3271
+ 油炸玉米粉饼
3272
+ 队列
3273
+ 乳蛋饼
3274
+ 被子
3275
+ 绗缝
3276
+ 引用
3277
+ 兔子
3278
+ 浣熊
3279
+ 比赛
3280
+ 赛道
3281
+ 水沟/跑道
3282
+ 赛车
3283
+ 球拍
3284
+ 雷达
3285
+ 散热器
3286
+ 广播
3287
+ 木筏/橡皮艇
3288
+ 布娃娃
3289
+ 栏杆/铁轨
3290
+ 轨道车
3291
+ 铁道
3292
+ 铁路桥梁
3293
+ 轨道线
3294
+ 火车站
3295
+
3296
+ 雨靴
3297
+ 彩虹
3298
+ 虹鳟鱼
3299
+ 雨衣
3300
+ 热带雨林
3301
+ 多雨的
3302
+ 葡萄干
3303
+ 耙子
3304
+ 公羊
3305
+ 斜坡
3306
+ 油菜籽
3307
+ 快速
3308
+ 说唱歌手
3309
+ 树莓
3310
+ 老鼠
3311
+ 棘轮
3312
+ 乌鸦
3313
+ 峡谷
3314
+
3315
+ 剃须刀
3316
+ 锋利的
3317
+ 阅读
3318
+ 阅读材料
3319
+ 钻孔器
3320
+ 后面
3321
+ 尾灯
3322
+ 后视图
3323
+ 后视镜
3324
+ 收据
3325
+ 收到
3326
+ 接待
3327
+ 配方
3328
+ 记录
3329
+ 唱片制作人
3330
+ 记录器/竖笛
3331
+ 录音室
3332
+ 娱乐室
3333
+ 休闲车
3334
+ 矩形
3335
+ 回收
3336
+ 回收站
3337
+ 红色
3338
+ 红地毯
3339
+ 红旗
3340
+ 红熊猫
3341
+ 红酒
3342
+ 红木
3343
+ 芦苇
3344
+ 礁石
3345
+ 卷轴
3346
+ 裁判
3347
+ 倒影
3348
+ 倒影
3349
+ 反射器
3350
+ 注册
3351
+ 控制
3352
+ 驯鹿
3353
+ 放松
3354
+ 释放
3355
+ 救援
3356
+ 宗教
3357
+ 宗教的
3358
+ 享受
3359
+ 保持
3360
+ 改造
3361
+ 遥控器
3362
+ 移除
3363
+ 修复
3364
+ 维修店
3365
+ 爬行动物
3366
+ 救援
3367
+ 救助者
3368
+ 研究
3369
+ 研究员
3370
+ 储层
3371
+ 住宅
3372
+ 居民区
3373
+ 树脂
3374
+ 度假胜地
3375
+ 度假小镇
3376
+ 餐厅的厨房
3377
+ 餐厅的露台
3378
+ 厕所
3379
+ 零售
3380
+ 寻回犬
3381
+ 制动火箭
3382
+ 揭示
3383
+ 犀牛
3384
+ 杜鹃
3385
+ 肋骨
3386
+ 丝带
3387
+ 大米
3388
+ 电饭煲
3389
+ 稻田
3390
+ 骑/搭乘
3391
+
3392
+ 骑马
3393
+ 步枪
3394
+ 边缘
3395
+ 环/戒指
3396
+ 暴乱
3397
+ 涟漪
3398
+ 上升
3399
+ 高层建筑
3400
+
3401
+ 河岸
3402
+ 河船
3403
+ 河谷
3404
+ 河床
3405
+
3406
+ 路标
3407
+ 公路旅行
3408
+ 路边
3409
+ 烤鸡
3410
+ 长袍
3411
+ 罗宾
3412
+ 机器人
3413
+ 石头
3414
+ 岩石拱
3415
+ 摇滚艺术家
3416
+ 摇滚乐队
3417
+ 攀岩者
3418
+ 攀岩
3419
+ 摇滚音乐会
3420
+ 岩石表面
3421
+ 岩层
3422
+ 摇滚歌手
3423
+ 火箭
3424
+ 摇椅
3425
+ 岩石
3426
+ 啮齿动物
3427
+ 牛仔竞技表演
3428
+ 竞技舞台
3429
+ 罗伊
3430
+ 狍子
3431
+
3432
+ 过山车
3433
+ 轮式溜冰鞋
3434
+ 溜冰鞋
3435
+ 擀面杖
3436
+ 浪漫
3437
+ 浪漫的
3438
+ 屋顶
3439
+ 屋顶花园
3440
+ 房间
3441
+ 房间分频器
3442
+
3443
+ 根啤酒
3444
+ 绳索桥
3445
+ 念珠
3446
+ 玫瑰
3447
+ 迷迭香
3448
+ 玫瑰色的云
3449
+ 罗特韦尔犬
3450
+ 圆桌
3451
+ 路由器
3452
+
3453
+ 罗文
3454
+ 皇家
3455
+ 橡皮图章
3456
+ 废墟
3457
+ 魔方
3458
+ 红宝石
3459
+ 莱夫
3460
+ 橄榄球
3461
+ 橄榄球
3462
+ 橄榄球运动员
3463
+ 毁坏
3464
+
3465
+ 朗姆酒
3466
+
3467
+ 跑步者
3468
+ 跑步鞋
3469
+ 农村的
3470
+
3471
+ 乡村的
3472
+ 黑麦
3473
+
3474
+
3475
+ 鞍囊
3476
+ 旅行
3477
+ 安全
3478
+ 安全背心
3479
+ 圣人
3480
+
3481
+ 帆船
3482
+ 航行
3483
+ 水手
3484
+ 松鼠猴
3485
+ 缘故
3486
+ 沙拉
3487
+ 沙拉碗
3488
+ 火蜥蜴
3489
+ 意大利蒜味腊肠
3490
+ 出售
3491
+ 三文鱼
3492
+ 沙龙
3493
+ 萨尔萨舞
3494
+
3495
+ 盐和胡椒瓶
3496
+ 盐湖
3497
+ 盐沼
3498
+ 盐瓶
3499
+ 敬礼
3500
+ 萨莫耶德人
3501
+ 武士
3502
+ 沙子
3503
+ 沙洲
3504
+ 砂箱
3505
+ 沙堡
3506
+ 沙雕
3507
+ 凉鞋
3508
+ 三明治
3509
+ 卫生巾
3510
+ 圣诞老人
3511
+ 蓝宝石
3512
+ 沙丁鱼
3513
+ 莎丽
3514
+ 生鱼片
3515
+ 沙爹
3516
+ 书包
3517
+ 卫星
3518
+
3519
+ 酱汁
3520
+ 碟子
3521
+ 桑拿
3522
+ 香肠
3523
+ 稀树大草原
3524
+
3525
+ 锯木架
3526
+ 萨克斯管
3527
+ 萨克斯手
3528
+ 脚手架
3529
+ 秤/标尺
3530
+ 比例模型
3531
+ 扇贝
3532
+ 疤痕
3533
+ 稻草人
3534
+ 围巾
3535
+ 场景
3536
+ 风景
3537
+ 雪纳瑞犬
3538
+ 学校
3539
+ 校车
3540
+ 校服
3541
+ 校舍
3542
+ 纵帆船
3543
+ 科学
3544
+ 科幻电影
3545
+ 科学博物馆
3546
+ 科学家
3547
+ 剪刀
3548
+ 壁灯
3549
+ 司康饼
3550
+ 勺子
3551
+ 踏板车/摩托车
3552
+ 分数
3553
+ 记分板
3554
+ 蝎子
3555
+ 童子军
3556
+ 炒蛋
3557
+ 废弃
3558
+ 刮板
3559
+ 刮伤
3560
+ 屏幕
3561
+ 纱门
3562
+ 截图
3563
+ 螺杆
3564
+ 螺丝刀
3565
+ 长卷纸/卷轴
3566
+ 擦洗
3567
+ 硬毛刷
3568
+ 雕塑家
3569
+ 雕塑
3570
+ 海洞穴
3571
+ 海冰
3572
+ 海狮
3573
+ 海龟
3574
+ 海胆
3575
+ 尖吻鲈
3576
+ 海底
3577
+ 海鸟
3578
+ 海鲜
3579
+ 海马
3580
+ 海豹
3581
+ 海景
3582
+ 海贝
3583
+ 海滨度假胜地
3584
+ 季节
3585
+ 座位
3586
+ 安全带
3587
+ 海藻
3588
+ 秘书
3589
+ 安全
3590
+ 小轿车
3591
+ 看到
3592
+ 种子
3593
+ 跷跷板
3594
+ 赛格威
3595
+ 自拍
3596
+ 出售
3597
+ 研讨会
3598
+ 感觉
3599
+ 传感器
3600
+ 服务器
3601
+ 服务器机房
3602
+ 服务
3603
+
3604
+ 缝纫机
3605
+ 影子
3606
+
3607
+
3608
+ 洗发水
3609
+ 形状
3610
+ 分享
3611
+ 鲨鱼
3612
+ 卷笔刀
3613
+ 记号笔
3614
+ 剃须刀
3615
+ 剃须膏
3616
+ 披肩/围巾
3617
+ 剪切
3618
+ 剪刀
3619
+
3620
+ 床单
3621
+ 乐谱
3622
+ 架子
3623
+ 贝壳
3624
+ 贝类
3625
+ 避难所
3626
+ 搁置
3627
+ 牧羊人
3628
+ 果子露
3629
+ 柴犬
3630
+ 发光
3631
+ 航运
3632
+ 集装箱
3633
+ 海难
3634
+ 船厂
3635
+ 衬衫
3636
+ 赤膊的
3637
+ 浅滩
3638
+
3639
+ 鞋盒
3640
+ 鞋店
3641
+ 鞋楦
3642
+ 射击
3643
+ 得分篮球后卫
3644
+ 商店橱窗
3645
+ 门面
3646
+ 购物者
3647
+ 购物
3648
+ 购物袋
3649
+ 购物篮
3650
+ 购物车
3651
+ 购物中心
3652
+ 购物街
3653
+ 海岸
3654
+ 海岸线
3655
+ 短的
3656
+ 短发
3657
+ 短裤
3658
+ 小酒杯
3659
+ 散弹枪
3660
+ 肩膀
3661
+ 单肩包
3662
+
3663
+ 陈列柜
3664
+ 淋浴
3665
+ 浴帽
3666
+ 浴帘
3667
+ 淋浴门
3668
+ 淋浴头
3669
+ 碎纸机
3670
+ 泼妇
3671
+
3672
+ 神社
3673
+ 灌木
3674
+ 快门
3675
+ 暹罗猫
3676
+ 西伯利亚
3677
+ 兄弟姐妹
3678
+ 侧面
3679
+ 边柜
3680
+ 配菜
3681
+ 边车
3682
+ 边线
3683
+ 壁板
3684
+ 标志
3685
+ 指示牌
3686
+ 信号
3687
+ 签名
3688
+ 丝绸
3689
+ 丝袜
3690
+ 筒仓
3691
+
3692
+ 银牌
3693
+ 银器
3694
+ 唱歌
3695
+ 烧焦
3696
+ 歌手
3697
+ 水槽
3698
+
3699
+ 坐/放置/坐落
3700
+ 坐着
3701
+ 滑板公园
3702
+ 滑板
3703
+ 滑板者
3704
+ 溜冰者
3705
+ 溜冰场
3706
+ 骨架
3707
+ 草图
3708
+ 串串
3709
+ 滑雪
3710
+ 滑雪靴
3711
+ 滑雪设备
3712
+ 滑雪服
3713
+ 滑雪缆车
3714
+ 滑雪杖
3715
+ 滑雪胜地
3716
+ 滑雪板
3717
+ 滑雪
3718
+ 滑雪鞋
3719
+ 皮肤
3720
+ 头骨
3721
+ 无边便帽
3722
+ 天空
3723
+ 天空塔
3724
+ 天窗
3725
+ 天际线
3726
+ 摩天大楼
3727
+ 激流回旋
3728
+ 石板
3729
+ 雪橇
3730
+ 睡眠
3731
+ 睡袋
3732
+ 睡衣
3733
+ 袖子
3734
+
3735
+ 滑动
3736
+ 滑块
3737
+ 吊索
3738
+
3739
+ 投币口
3740
+ 老虎机
3741
+ 树懒
3742
+ 慢炖锅
3743
+ 鼻涕虫
3744
+ 贫民窟
3745
+ 气味
3746
+ 微笑
3747
+ 烟雾/抽烟
3748
+ 零食
3749
+ 蜗牛
3750
+
3751
+ 鲷鱼
3752
+ 快照
3753
+ 通气管
3754
+ 鼻子
3755
+
3756
+ 雪豹
3757
+ 雪山
3758
+ 雪球
3759
+ 单板滑雪者
3760
+ 雪原
3761
+ 雪花
3762
+ 雪人
3763
+ 雪地摩托
3764
+ 雪犁
3765
+ 雪鞋
3766
+
3767
+ 肥皂
3768
+ 肥皂泡
3769
+ 给皂器
3770
+ 足球守门员
3771
+ 社会名流
3772
+ 短袜
3773
+ 插座
3774
+ 苏打水
3775
+ 垒球
3776
+ 软件
3777
+ 太阳能电池阵列
3778
+ 士兵
3779
+ 独奏
3780
+ 解决方案
3781
+ 宽边帽
3782
+ 歌曲
3783
+ 声音
3784
+
3785
+ 汤碗
3786
+ 汤匙
3787
+ 酸奶油
3788
+ 纪念品
3789
+ 豆浆
3790
+ 水疗中心
3791
+ 空间
3792
+ 航天飞机
3793
+ 空间站
3794
+ 宇宙飞船
3795
+ 意大利面
3796
+ 横跨
3797
+ 扳手
3798
+ 火花
3799
+ 闪耀
3800
+ 烟火
3801
+ 起泡葡萄酒
3802
+ 麻雀
3803
+ 抹刀
3804
+ 扬声器
3805
+ 观众
3806
+ 会话框
3807
+ 速度限制
3808
+ 限速标志
3809
+ 快艇
3810
+ 车速表
3811
+
3812
+ 香料
3813
+ 调料架
3814
+ 蜘蛛
3815
+ 蜘蛛网
3816
+ 扣球
3817
+ 旋转
3818
+ 菠菜
3819
+ 尖塔
3820
+ 飞溅
3821
+ 海绵
3822
+ 勺子
3823
+ 体育协会
3824
+ 运动器材
3825
+ 运动团队
3826
+ 体育球
3827
+ 体育器材
3828
+ 运动会
3829
+ 运动服装
3830
+
3831
+ 喷雾
3832
+ 伸展
3833
+ 春天
3834
+ 春卷
3835
+
3836
+ 洒水器
3837
+ 发芽
3838
+ 云杉
3839
+ 云杉森林
3840
+
3841
+ 广场
3842
+ 南瓜
3843
+
3844
+
3845
+ 鱿鱼
3846
+ 松鼠
3847
+ 水枪
3848
+
3849
+ 稳定的
3850
+ (码放整齐的)一叠
3851
+ 体育场
3852
+ 工作人员
3853
+ 舞台
3854
+ 舞台灯
3855
+ 驿马车
3856
+ 弄脏
3857
+ 不锈钢
3858
+ 楼梯
3859
+ 楼梯
3860
+ 楼梯间
3861
+ 摊位/小隔间
3862
+ 种马
3863
+ 站/矗立/摊位
3864
+
3865
+ 主食
3866
+ 订书机
3867
+ 星星
3868
+ 盯着
3869
+ 海星
3870
+ 杨桃
3871
+ 燕八哥
3872
+ 州立公园
3873
+ 公立学校
3874
+ 车站
3875
+ 固定自行车
3876
+ 文具
3877
+ 雕像
3878
+ 牛排
3879
+ 牛排刀
3880
+ 蒸汽
3881
+ 蒸汽机
3882
+ 蒸汽机车
3883
+ 蒸汽火车
3884
+ 馒头
3885
+
3886
+ 方向盘
3887
+ (花草的)茎
3888
+ 模版
3889
+ 梯凳
3890
+ 立体声
3891
+ 听诊器
3892
+
3893
+ 戳/条状物
3894
+ 竹节虫
3895
+ 贴纸
3896
+ 静物画
3897
+ 高跷
3898
+ 黄貂鱼
3899
+ 搅拌
3900
+ 搅拌器
3901
+
3902
+
3903
+ 股票
3904
+ 长筒袜
3905
+ 腹部
3906
+ 石头建筑
3907
+ 石雕
3908
+ 石屋
3909
+ 石磨
3910
+ 凳子
3911
+ 停止
3912
+ 停在
3913
+ 红灯
3914
+ 停车标志
3915
+ 秒表
3916
+ 红绿灯
3917
+ 存储箱
3918
+ 储藏室
3919
+ 罐/蓄水池
3920
+ 商店
3921
+ 店面
3922
+
3923
+ 风暴
3924
+ 暴风云
3925
+ 狂风暴雨的
3926
+ 炉子
3927
+ 扑克
3928
+ 跨骑
3929
+ 过滤器
3930
+ 海峡
3931
+
3932
+ 稻草/吸管
3933
+ 草帽
3934
+ 草莓
3935
+ 溪流
3936
+ 街头艺术
3937
+ 街头艺术家
3938
+ 街角
3939
+ 流浪狗
3940
+ 街头食品
3941
+ 路灯
3942
+ 街市场
3943
+ 街头摄影
3944
+ 街景
3945
+ 路标
3946
+ 街头小贩
3947
+ 拉伸
3948
+ 担架
3949
+ 罢工
3950
+ 前锋
3951
+ 细绳
3952
+ 芝士条
3953
+ 带子
3954
+ 条纹
3955
+ 漫步
3956
+ 结构
3957
+ 工作室
3958
+ 影棚拍摄
3959
+ 材料
3960
+ 填充玩具动物
3961
+ 毛绒玩具
3962
+
3963
+ 树桩
3964
+ 惊人的
3965
+ 特技
3966
+ 佛塔
3967
+ 风格
3968
+ 手写笔
3969
+ 潜艇
3970
+ 潜艇形大三明治
3971
+ 海底水
3972
+ 郊区
3973
+ 地铁
3974
+ 地铁站
3975
+ 低音炮
3976
+ 多肉
3977
+ 绒面革
3978
+
3979
+ 糖碗
3980
+ 甘蔗
3981
+ 方糖
3982
+ 西装
3983
+ 套房
3984
+ 夏天
3985
+ 夏天傍晚
3986
+ 峰顶
3987
+ 太阳
3988
+ 太阳帽
3989
+ 日光浴
3990
+ 周日
3991
+ 日晷
3992
+ 向日葵
3993
+ 向日葵田
3994
+ 葵花籽
3995
+ 太阳镜
3996
+ 晴天
3997
+ 日出
3998
+ 日落
3999
+ 遮阳伞
4000
+ 阳光
4001
+ 超级碗
4002
+ 跑车
4003
+ 超级英雄
4004
+ 超市
4005
+ 超市货架
4006
+ 超模
4007
+ 支持者
4008
+ 冲浪
4009
+ 表面
4010
+ 冲浪板
4011
+ 冲浪者
4012
+ 外科医生
4013
+ 外科手术
4014
+ 环绕
4015
+ 寿司
4016
+ 寿司吧
4017
+ 背带裤
4018
+ 悬架
4019
+ 吊桥
4020
+ 越野车
4021
+ 燕子
4022
+ 燕尾蝶
4023
+ 沼泽
4024
+ 天鹅
4025
+ 天鹅游艇
4026
+ 运动裤
4027
+ 防汗带
4028
+ 毛衣
4029
+ 运动衫
4030
+ 甜的
4031
+ 红薯
4032
+ 游泳
4033
+ 泳帽
4034
+ 游泳者
4035
+ 游泳洞
4036
+ 游泳池
4037
+ 摆动
4038
+ 平转桥
4039
+ 秋千
4040
+ 漩涡
4041
+ 开关
4042
+ 转椅
4043
+
4044
+ 旗鱼
4045
+ 象征
4046
+ 对称
4047
+ 犹太教堂
4048
+ 注射器
4049
+ 糖浆
4050
+ 系统
4051
+ t恤
4052
+ t恤
4053
+ 塔巴斯科辣椒酱
4054
+ 虎斑
4055
+ 乒乓球拍
4056
+ 桌面
4057
+ 桌布
4058
+ 平板电脑
4059
+ 餐具
4060
+ 转速表
4061
+ 拦截
4062
+ 墨西哥煎玉米卷
4063
+ 跆拳道
4064
+ 太极
4065
+ 尾巴
4066
+ 裁缝
4067
+ 拍/拿
4068
+ 起飞
4069
+ 说话/交谈/演讲
4070
+ 手鼓
4071
+ 棕褐色
4072
+ 橘子
4073
+ 胶带/磁带/终点线
4074
+ 挂毯
4075
+ 沥青碎石路面
4076
+ 芋头
4077
+ 篷布
4078
+ 果馅饼
4079
+ 流苏
4080
+ 味道
4081
+ 榻榻米
4082
+ 纹身
4083
+ 纹身艺术家
4084
+ 酒馆
4085
+
4086
+ 茶包
4087
+ 茶话会
4088
+ 茶园
4089
+ 茶壶
4090
+ 茶具
4091
+
4092
+ 老师
4093
+ 茶杯
4094
+ 水鸭
4095
+ 团队合影
4096
+ 团队介绍
4097
+ 眼泪/撕裂/划破
4098
+ 技术员
4099
+ 技术
4100
+ 泰迪熊
4101
+ T字形物
4102
+ 青少年
4103
+ 电线杆
4104
+ 变焦镜头
4105
+ 望远镜
4106
+ 电视
4107
+ 电视摄像机
4108
+ 电视室
4109
+ 电视演播室
4110
+ 温度
4111
+ 寺庙
4112
+ 天妇罗
4113
+ 网球
4114
+ 网球场
4115
+ 网球比赛
4116
+ 网球网
4117
+ 网球运动员
4118
+ 网球拍
4119
+ 帐篷
4120
+ 龙舌兰酒
4121
+ 终端/航站楼
4122
+ 阳台
4123
+ 地形
4124
+ 玻璃容器
4125
+ 领土
4126
+ 测试
4127
+ 测试赛
4128
+ 试管
4129
+ 文本
4130
+ 短信
4131
+ 纺织
4132
+ 纹理
4133
+ 感恩节
4134
+ 感恩节晚餐
4135
+ 剧院
4136
+ 戏剧演员
4137
+ 治疗
4138
+ 温度计
4139
+ 热水瓶
4140
+ 暖瓶
4141
+ 恒温器
4142
+ 灌木丛
4143
+ 顶针
4144
+ 东西
4145
+ 思考
4146
+
4147
+ 宝座
4148
+ 金銮殿
4149
+
4150
+ 抱枕
4151
+
4152
+ 雷雨
4153
+ 百里香
4154
+ 皇冠
4155
+ 记号
4156
+
4157
+ 售票亭
4158
+ 潮池
4159
+ 领带
4160
+ 老虎
4161
+
4162
+
4163
+ 瓷砖地板
4164
+ 瓦屋顶
4165
+ 瓷砖墙
4166
+
4167
+ 锡纸
4168
+
4169
+ 提拉米苏
4170
+ 轮胎
4171
+ 纸巾
4172
+ 烤面包
4173
+ 烤面包机
4174
+ 烟草
4175
+ 烟斗
4176
+ 学步的小孩
4177
+ 脚趾
4178
+ 豆腐
4179
+ 马桶
4180
+ 马桶座圈
4181
+ 化妆包
4182
+ 东京铁塔
4183
+ 番茄
4184
+ 番茄酱
4185
+ 番茄汤
4186
+
4187
+ 钳子
4188
+ 钳子
4189
+ 工具
4190
+ 工具箱
4191
+ 牙刷
4192
+ 牙膏
4193
+ 牙签
4194
+ 修剪成形的花园
4195
+ 配料
4196
+ 火炬/光源
4197
+ 龙卷风
4198
+ 玉米粉圆饼
4199
+ 乌龟
4200
+ 大手提袋
4201
+ 图腾柱
4202
+ 龙猫
4203
+ 巨嘴鸟
4204
+ 触摸
4205
+ 触地
4206
+ 旅行
4207
+ 旅游巴士
4208
+ 导游
4209
+ 游客
4210
+ 旅游景点
4211
+ 锦标赛
4212
+ 拖车
4213
+ 毛巾
4214
+ 毛巾杆
4215
+ 大厦
4216
+ 塔桥
4217
+ 小镇
4218
+ 城镇广场
4219
+ 玩具
4220
+ 玩具车
4221
+ 玩具枪
4222
+ 玩具店
4223
+ 跑道
4224
+ 拖拉机
4225
+ 贸易
4226
+ 传统
4227
+ 传统的
4228
+ 交通
4229
+ 锥形交通路标
4230
+ 交通拥堵
4231
+ 交通堵塞
4232
+ 交通标志
4233
+ 小道
4234
+ 预告片
4235
+ 拖车
4236
+ 火车
4237
+ 火车桥
4238
+ 火车车厢
4239
+ 火车内部
4240
+ 火车轨道
4241
+ 火车窗口
4242
+ 教练
4243
+ 训练
4244
+ 训练长椅
4245
+ 训练场
4246
+ 电车/手推车
4247
+ 蹦床
4248
+ 变形金刚
4249
+ 透明度
4250
+ 旅行
4251
+ 托盘/碟子
4252
+ 跑步机
4253
+ 美食
4254
+
4255
+ 树枝
4256
+ 林场
4257
+ 树蛙
4258
+ 树屋
4259
+ 树根
4260
+ 树干
4261
+ 试验
4262
+ 三角形
4263
+ 铁人三项
4264
+ 部落
4265
+ 支流
4266
+ 戏法/特技
4267
+ 三轮车
4268
+ 修剪
4269
+ 三人组
4270
+ 三脚架
4271
+ 长号
4272
+ 部队
4273
+ 奖杯
4274
+ 奖杯
4275
+ 热带
4276
+ 鳟鱼
4277
+ 卡车
4278
+ 卡车司机
4279
+ 浴缸
4280
+ 管子
4281
+ 拖船
4282
+ 郁金香
4283
+ 金枪鱼
4284
+ 苔原
4285
+ 隧道
4286
+ 涡轮
4287
+ 火鸡
4288
+ 转动
4289
+ 芜菁
4290
+ 绿松石
4291
+ 炮塔
4292
+ 乌龟
4293
+ 獠牙
4294
+ 电视演员
4295
+ 电视柜
4296
+ 电视剧
4297
+ 电视节目类型
4298
+ 电视名人
4299
+ 电视节目
4300
+ 情景喜剧
4301
+ 电视塔
4302
+ 枝条
4303
+ 黄昏
4304
+ 双胞胎
4305
+ 麻线
4306
+
4307
+ 类型
4308
+ 键入
4309
+ 打字机
4310
+ 尤克里里
4311
+ 奥特曼
4312
+
4313
+ 内衣
4314
+ 水下
4315
+ 独角兽
4316
+ 制服
4317
+ 宇宙
4318
+ 大学
4319
+ 向上
4320
+ 城市
4321
+ 尿壶
4322
+
4323
+ 使用
4324
+ 用具
4325
+ 杂物间
4326
+ 吸尘器/真空
4327
+
4328
+ 阀门
4329
+ 吸血鬼
4330
+ 货车
4331
+ 香草
4332
+ 虚荣
4333
+ 种类
4334
+ 花瓶/瓶
4335
+ 金库
4336
+ 矢量卡通插图
4337
+ 矢量图标
4338
+ 蔬菜
4339
+ 菜园
4340
+ 蔬菜市场
4341
+ 植被
4342
+ 车辆
4343
+ 面纱
4344
+ 静脉
4345
+ 天鹅绒
4346
+ 自动售货机
4347
+ 小贩
4348
+ 通风孔
4349
+ 胡蜂属
4350
+
4351
+ 背心
4352
+ 兽医
4353
+ 经验丰富的
4354
+ 兽医办公室
4355
+ 高架桥
4356
+ 视频
4357
+ 摄像机
4358
+ 电子游戏
4359
+ 录像带
4360
+ 视镜
4361
+ 守夜
4362
+ 别墅
4363
+ 村庄
4364
+ 藤蔓
4365
+
4366
+ 葡萄园
4367
+ 暴力
4368
+ 紫罗兰色
4369
+ 小提琴
4370
+ 小提琴家
4371
+ 中提琴演奏者
4372
+ 愿景
4373
+ 遮阳板
4374
+ 伏特加
4375
+ 火山
4376
+ 排球
4377
+ 排球场
4378
+ 排球运动员
4379
+ 志愿者
4380
+ 航行
4381
+ 秃鹰
4382
+ 华夫饼干
4383
+ 华夫饼机
4384
+ 货车
4385
+ 马车车轮
4386
+
4387
+ 服务员
4388
+ 候机室
4389
+ 等候室
4390
+
4391
+ 步行
4392
+ 手杖
4393
+ 挂钟
4394
+ 壁纸
4395
+ 核桃
4396
+ 海象
4397
+ 战争
4398
+ 仓库
4399
+ 温暖的
4400
+ 警告标志
4401
+ 战士
4402
+ 军舰
4403
+ 疣猪
4404
+
4405
+ 洗衣机/垫圈
4406
+
4407
+ 洗衣机
4408
+ 黄蜂
4409
+ 浪费
4410
+ 废物容器
4411
+ 手表
4412
+
4413
+ 水鸟
4414
+ 水牛
4415
+ 水冷却器
4416
+ 水滴
4417
+ 水景
4418
+ 热水器
4419
+ 水位
4420
+ 荷花
4421
+ 水上乐园
4422
+ 水管
4423
+ 净水器
4424
+ 滑水板
4425
+ 水上运动
4426
+ 水面
4427
+ 水塔
4428
+ 水彩
4429
+ 水彩插图
4430
+ 水彩画
4431
+ 瀑布
4432
+ 喷壶
4433
+ 水印叠加图章
4434
+ 西瓜
4435
+ 防水外套
4436
+ 水路
4437
+ 波浪
4438
+
4439
+ 武器
4440
+ 穿着
4441
+ 天气
4442
+ 叶片
4443
+
4444
+ 摄像头
4445
+ 婚礼
4446
+ 结婚戒指
4447
+ 婚礼花束
4448
+ 结婚蛋糕
4449
+ 新婚夫妇
4450
+ 婚礼请柬
4451
+ 婚礼派对
4452
+ 婚纱照
4453
+ 婚礼摄影师
4454
+ 婚纱摄影
4455
+ 婚宴
4456
+
4457
+ 杂草
4458
+ 重量
4459
+ 体重秤
4460
+ 焊接工
4461
+
4462
+ 西餐
4463
+ 西餐厅
4464
+ 湿
4465
+ 吧台
4466
+ 潜水衣
4467
+ 湿地
4468
+ 潜水服
4469
+ 鲸鱼
4470
+ 鲸鲨
4471
+ 小麦
4472
+ 麦田
4473
+ 车轮
4474
+ 轮椅
4475
+ 后轮支撑车技
4476
+ 生奶油
4477
+ 搅拌器
4478
+ 胡须
4479
+ 威士忌
4480
+ 哨子
4481
+ 白色
4482
+ 白宫
4483
+ 白葡萄酒
4484
+ 白板
4485
+ 便门
4486
+ 宽的
4487
+ 挥动
4488
+ 假发
4489
+ Wii
4490
+ Wii手柄
4491
+ 荒野
4492
+ 角马
4493
+ 野火
4494
+ 野花
4495
+ 野生动物
4496
+ 柳树
4497
+
4498
+ 风铃
4499
+ 风电场
4500
+ 风力涡轮机
4501
+ 风车
4502
+ 窗户
4503
+ 窗台花盆箱
4504
+ 橱窗展示
4505
+ 窗框
4506
+ 纱窗
4507
+ 靠窗的座位
4508
+ 窗台
4509
+ 雨刮器
4510
+ 挡风玻璃
4511
+ 有风的
4512
+ 酒瓶
4513
+ 冷酒器
4514
+ 酒柜
4515
+ 酒窖
4516
+ 酒杯
4517
+ 酒架
4518
+ 品酒
4519
+ 酒庄
4520
+ 翅膀
4521
+ 冬天
4522
+ 冬瓜
4523
+ 冬天的早晨
4524
+ 冬季场景
4525
+ 冬季运动
4526
+ 冬季风暴
4527
+ 电线
4528
+ 紫藤
4529
+ 巫婆
4530
+ 女巫帽子
4531
+ 炒锅
4532
+
4533
+ 女人
4534
+ 木头
4535
+ 林鸳鸯
4536
+ 木地板
4537
+ 木墙
4538
+ 烧木炉
4539
+ 木匙
4540
+ 林地
4541
+ 啄木鸟
4542
+ 木工刨
4543
+ 羊毛
4544
+ 工作
4545
+ 练习卡
4546
+ 工作台
4547
+ 工人
4548
+ 工作场所
4549
+ 车间
4550
+ 世界
4551
+ 蠕虫
4552
+ 敬拜
4553
+ 伤口
4554
+
4555
+ 裹身裙
4556
+ 包装纸
4557
+ 搏斗
4558
+ 摔跤手
4559
+ 皱纹
4560
+ 腕带
4561
+
4562
+ 作家
4563
+ 手写/字迹
4564
+ 毛笔
4565
+ 写字桌
4566
+ 游艇
4567
+ 牦牛
4568
+ 院子
4569
+ 黄色
4570
+ 瑜伽
4571
+ 瑜伽垫
4572
+ 酸奶
4573
+
4574
+ 蛋黄
4575
+ 青年
4576
+ 青年旅馆
4577
+ 蒙古包
4578
+ 斑马
4579
+ 斑马线
4580
+ 禅意花园
4581
+ 拉链
4582
+ 拉链
4583
+ 僵尸
4584
+ 粽子
4585
+ 动物园
data/ram_tag_list_threshold.py ADDED
@@ -0,0 +1,4585 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ram_class_threshold = [0.65,
2
+ 0.65,
3
+ 0.65,
4
+ 0.65,
5
+ 0.65,
6
+ 0.65,
7
+ 0.65,
8
+ 0.8,
9
+ 0.71,
10
+ 0.75,
11
+ 0.65,
12
+ 0.65,
13
+ 0.65,
14
+ 0.8,
15
+ 0.65,
16
+ 0.8,
17
+ 0.8,
18
+ 0.65,
19
+ 0.65,
20
+ 0.65,
21
+ 0.65,
22
+ 0.8,
23
+ 0.65,
24
+ 0.8,
25
+ 0.8,
26
+ 0.65,
27
+ 0.65,
28
+ 0.65,
29
+ 0.65,
30
+ 0.65,
31
+ 0.65,
32
+ 0.65,
33
+ 0.65,
34
+ 0.65,
35
+ 0.65,
36
+ 0.65,
37
+ 0.8,
38
+ 0.65,
39
+ 0.65,
40
+ 0.9,
41
+ 0.65,
42
+ 0.9,
43
+ 0.65,
44
+ 0.65,
45
+ 0.65,
46
+ 0.65,
47
+ 0.8,
48
+ 0.65,
49
+ 0.65,
50
+ 0.65,
51
+ 0.65,
52
+ 0.65,
53
+ 0.61,
54
+ 0.65,
55
+ 0.65,
56
+ 0.65,
57
+ 0.65,
58
+ 0.65,
59
+ 0.8,
60
+ 0.65,
61
+ 0.65,
62
+ 0.65,
63
+ 0.65,
64
+ 0.65,
65
+ 0.65,
66
+ 0.65,
67
+ 0.65,
68
+ 0.65,
69
+ 0.65,
70
+ 0.65,
71
+ 0.65,
72
+ 0.65,
73
+ 0.65,
74
+ 0.8,
75
+ 0.65,
76
+ 0.8,
77
+ 0.8,
78
+ 0.7,
79
+ 0.65,
80
+ 0.65,
81
+ 0.8,
82
+ 0.65,
83
+ 0.65,
84
+ 0.8,
85
+ 0.65,
86
+ 0.65,
87
+ 0.65,
88
+ 0.65,
89
+ 0.65,
90
+ 0.82,
91
+ 0.8,
92
+ 0.65,
93
+ 0.65,
94
+ 0.8,
95
+ 0.65,
96
+ 0.8,
97
+ 0.65,
98
+ 0.65,
99
+ 0.65,
100
+ 0.65,
101
+ 0.65,
102
+ 0.9,
103
+ 0.65,
104
+ 0.65,
105
+ 0.65,
106
+ 0.65,
107
+ 0.65,
108
+ 0.65,
109
+ 0.65,
110
+ 0.65,
111
+ 0.65,
112
+ 0.65,
113
+ 0.8,
114
+ 0.65,
115
+ 0.65,
116
+ 0.65,
117
+ 0.65,
118
+ 0.8,
119
+ 0.65,
120
+ 0.65,
121
+ 0.65,
122
+ 0.65,
123
+ 0.65,
124
+ 0.8,
125
+ 0.65,
126
+ 0.65,
127
+ 0.8,
128
+ 0.65,
129
+ 0.65,
130
+ 0.8,
131
+ 0.65,
132
+ 0.65,
133
+ 0.65,
134
+ 0.65,
135
+ 0.65,
136
+ 0.8,
137
+ 0.65,
138
+ 0.65,
139
+ 0.65,
140
+ 0.65,
141
+ 0.8,
142
+ 0.8,
143
+ 0.65,
144
+ 0.85,
145
+ 0.8,
146
+ 0.65,
147
+ 0.65,
148
+ 0.65,
149
+ 0.65,
150
+ 0.8,
151
+ 0.65,
152
+ 0.8,
153
+ 0.65,
154
+ 0.65,
155
+ 0.65,
156
+ 0.65,
157
+ 0.65,
158
+ 0.65,
159
+ 0.65,
160
+ 0.65,
161
+ 0.65,
162
+ 0.65,
163
+ 0.65,
164
+ 0.65,
165
+ 0.8,
166
+ 0.65,
167
+ 0.65,
168
+ 0.65,
169
+ 0.65,
170
+ 0.65,
171
+ 0.65,
172
+ 0.65,
173
+ 0.8,
174
+ 0.65,
175
+ 0.65,
176
+ 0.77,
177
+ 0.65,
178
+ 0.65,
179
+ 0.65,
180
+ 0.9,
181
+ 0.65,
182
+ 0.65,
183
+ 0.65,
184
+ 0.65,
185
+ 0.65,
186
+ 0.65,
187
+ 0.65,
188
+ 0.65,
189
+ 0.65,
190
+ 0.8,
191
+ 0.65,
192
+ 0.89,
193
+ 0.65,
194
+ 0.8,
195
+ 0.65,
196
+ 0.65,
197
+ 0.65,
198
+ 0.65,
199
+ 0.65,
200
+ 0.65,
201
+ 0.8,
202
+ 0.65,
203
+ 0.65,
204
+ 0.65,
205
+ 0.65,
206
+ 0.65,
207
+ 0.78,
208
+ 0.8,
209
+ 0.65,
210
+ 0.65,
211
+ 0.65,
212
+ 0.65,
213
+ 0.65,
214
+ 0.65,
215
+ 0.65,
216
+ 0.8,
217
+ 0.65,
218
+ 0.65,
219
+ 0.9,
220
+ 0.8,
221
+ 0.65,
222
+ 0.65,
223
+ 0.65,
224
+ 0.65,
225
+ 0.65,
226
+ 0.65,
227
+ 0.8,
228
+ 0.65,
229
+ 0.65,
230
+ 0.65,
231
+ 0.65,
232
+ 0.65,
233
+ 0.65,
234
+ 0.65,
235
+ 0.65,
236
+ 0.65,
237
+ 0.65,
238
+ 0.65,
239
+ 0.8,
240
+ 0.8,
241
+ 0.65,
242
+ 0.65,
243
+ 0.65,
244
+ 0.65,
245
+ 0.65,
246
+ 0.8,
247
+ 0.65,
248
+ 0.8,
249
+ 0.65,
250
+ 0.9,
251
+ 0.65,
252
+ 0.83,
253
+ 0.65,
254
+ 0.65,
255
+ 0.65,
256
+ 0.8,
257
+ 0.65,
258
+ 0.65,
259
+ 0.8,
260
+ 0.65,
261
+ 0.65,
262
+ 0.79,
263
+ 0.65,
264
+ 0.65,
265
+ 0.8,
266
+ 0.65,
267
+ 0.65,
268
+ 0.65,
269
+ 0.89,
270
+ 0.65,
271
+ 0.65,
272
+ 0.65,
273
+ 0.65,
274
+ 0.65,
275
+ 0.9,
276
+ 0.65,
277
+ 0.65,
278
+ 0.86,
279
+ 0.65,
280
+ 0.65,
281
+ 0.65,
282
+ 0.65,
283
+ 0.65,
284
+ 0.65,
285
+ 0.65,
286
+ 0.65,
287
+ 0.65,
288
+ 0.8,
289
+ 0.65,
290
+ 0.65,
291
+ 0.8,
292
+ 0.65,
293
+ 0.65,
294
+ 0.65,
295
+ 0.65,
296
+ 0.79,
297
+ 0.65,
298
+ 0.63,
299
+ 0.65,
300
+ 0.87,
301
+ 0.8,
302
+ 0.46,
303
+ 0.65,
304
+ 0.65,
305
+ 0.65,
306
+ 0.65,
307
+ 0.65,
308
+ 0.65,
309
+ 0.8,
310
+ 0.65,
311
+ 0.9,
312
+ 0.65,
313
+ 0.65,
314
+ 0.9,
315
+ 0.65,
316
+ 0.65,
317
+ 0.8,
318
+ 0.65,
319
+ 0.65,
320
+ 0.65,
321
+ 0.65,
322
+ 0.65,
323
+ 0.65,
324
+ 0.65,
325
+ 0.8,
326
+ 0.65,
327
+ 0.65,
328
+ 0.65,
329
+ 0.65,
330
+ 0.65,
331
+ 0.8,
332
+ 0.65,
333
+ 0.65,
334
+ 0.65,
335
+ 0.65,
336
+ 0.65,
337
+ 0.65,
338
+ 0.65,
339
+ 0.8,
340
+ 0.65,
341
+ 0.65,
342
+ 0.65,
343
+ 0.8,
344
+ 0.65,
345
+ 0.65,
346
+ 0.8,
347
+ 0.65,
348
+ 0.65,
349
+ 0.65,
350
+ 0.65,
351
+ 0.9,
352
+ 0.65,
353
+ 0.65,
354
+ 0.65,
355
+ 0.65,
356
+ 0.65,
357
+ 0.65,
358
+ 0.65,
359
+ 0.8,
360
+ 0.65,
361
+ 0.65,
362
+ 0.65,
363
+ 0.65,
364
+ 0.65,
365
+ 0.65,
366
+ 0.65,
367
+ 0.9,
368
+ 0.65,
369
+ 0.8,
370
+ 0.65,
371
+ 0.8,
372
+ 0.8,
373
+ 0.8,
374
+ 0.65,
375
+ 0.65,
376
+ 0.84,
377
+ 0.65,
378
+ 0.65,
379
+ 0.79,
380
+ 0.65,
381
+ 0.65,
382
+ 0.65,
383
+ 0.65,
384
+ 0.8,
385
+ 0.65,
386
+ 0.65,
387
+ 0.65,
388
+ 0.65,
389
+ 0.8,
390
+ 0.65,
391
+ 0.65,
392
+ 0.65,
393
+ 0.65,
394
+ 0.65,
395
+ 0.65,
396
+ 0.65,
397
+ 0.8,
398
+ 0.81,
399
+ 0.65,
400
+ 0.8,
401
+ 0.65,
402
+ 0.65,
403
+ 0.9,
404
+ 0.65,
405
+ 0.65,
406
+ 0.65,
407
+ 0.65,
408
+ 0.8,
409
+ 0.65,
410
+ 0.65,
411
+ 0.65,
412
+ 0.65,
413
+ 0.65,
414
+ 0.65,
415
+ 0.9,
416
+ 0.65,
417
+ 0.65,
418
+ 0.8,
419
+ 0.65,
420
+ 0.65,
421
+ 0.65,
422
+ 0.65,
423
+ 0.65,
424
+ 0.65,
425
+ 0.9,
426
+ 0.65,
427
+ 0.65,
428
+ 0.65,
429
+ 0.87,
430
+ 0.65,
431
+ 0.65,
432
+ 0.65,
433
+ 0.65,
434
+ 0.65,
435
+ 0.65,
436
+ 0.65,
437
+ 0.65,
438
+ 0.83,
439
+ 0.65,
440
+ 0.65,
441
+ 0.65,
442
+ 0.65,
443
+ 0.65,
444
+ 0.65,
445
+ 0.65,
446
+ 0.77,
447
+ 0.87,
448
+ 0.65,
449
+ 0.65,
450
+ 0.8,
451
+ 0.8,
452
+ 0.65,
453
+ 0.65,
454
+ 0.65,
455
+ 0.65,
456
+ 0.85,
457
+ 0.65,
458
+ 0.68,
459
+ 0.65,
460
+ 0.8,
461
+ 0.65,
462
+ 0.65,
463
+ 0.75,
464
+ 0.8,
465
+ 0.65,
466
+ 0.65,
467
+ 0.65,
468
+ 0.65,
469
+ 0.65,
470
+ 0.65,
471
+ 0.65,
472
+ 0.8,
473
+ 0.65,
474
+ 0.65,
475
+ 0.8,
476
+ 0.8,
477
+ 0.8,
478
+ 0.8,
479
+ 0.79,
480
+ 0.65,
481
+ 0.85,
482
+ 0.65,
483
+ 0.65,
484
+ 0.65,
485
+ 0.9,
486
+ 0.65,
487
+ 0.89,
488
+ 0.8,
489
+ 0.65,
490
+ 0.65,
491
+ 0.65,
492
+ 0.76,
493
+ 0.65,
494
+ 0.65,
495
+ 0.65,
496
+ 0.65,
497
+ 0.65,
498
+ 0.65,
499
+ 1,
500
+ 0.65,
501
+ 0.65,
502
+ 0.65,
503
+ 0.65,
504
+ 0.65,
505
+ 0.65,
506
+ 0.65,
507
+ 0.65,
508
+ 0.65,
509
+ 0.8,
510
+ 0.65,
511
+ 0.65,
512
+ 0.65,
513
+ 0.9,
514
+ 0.65,
515
+ 0.89,
516
+ 0.7,
517
+ 0.65,
518
+ 0.65,
519
+ 0.65,
520
+ 0.65,
521
+ 0.65,
522
+ 0.8,
523
+ 0.8,
524
+ 0.65,
525
+ 0.65,
526
+ 0.71,
527
+ 0.65,
528
+ 0.65,
529
+ 0.65,
530
+ 0.65,
531
+ 0.65,
532
+ 0.8,
533
+ 0.65,
534
+ 0.65,
535
+ 0.8,
536
+ 0.65,
537
+ 0.65,
538
+ 0.9,
539
+ 0.65,
540
+ 0.65,
541
+ 0.65,
542
+ 0.65,
543
+ 0.8,
544
+ 0.65,
545
+ 0.65,
546
+ 0.65,
547
+ 0.65,
548
+ 0.65,
549
+ 0.65,
550
+ 0.65,
551
+ 0.8,
552
+ 0.65,
553
+ 0.65,
554
+ 0.8,
555
+ 0.8,
556
+ 0.65,
557
+ 0.65,
558
+ 0.8,
559
+ 0.8,
560
+ 0.65,
561
+ 0.65,
562
+ 0.65,
563
+ 0.8,
564
+ 0.65,
565
+ 0.8,
566
+ 0.8,
567
+ 0.65,
568
+ 0.8,
569
+ 0.65,
570
+ 0.8,
571
+ 0.8,
572
+ 0.9,
573
+ 0.65,
574
+ 0.85,
575
+ 0.8,
576
+ 0.8,
577
+ 0.8,
578
+ 0.9,
579
+ 0.65,
580
+ 0.65,
581
+ 0.8,
582
+ 0.65,
583
+ 0.65,
584
+ 0.65,
585
+ 0.75,
586
+ 0.65,
587
+ 0.65,
588
+ 0.65,
589
+ 0.65,
590
+ 0.65,
591
+ 0.65,
592
+ 0.65,
593
+ 0.65,
594
+ 0.8,
595
+ 0.65,
596
+ 0.65,
597
+ 0.65,
598
+ 0.65,
599
+ 0.65,
600
+ 0.65,
601
+ 0.65,
602
+ 0.65,
603
+ 0.65,
604
+ 0.65,
605
+ 0.65,
606
+ 0.65,
607
+ 0.65,
608
+ 0.65,
609
+ 0.65,
610
+ 0.65,
611
+ 0.65,
612
+ 0.8,
613
+ 0.65,
614
+ 0.8,
615
+ 0.65,
616
+ 0.65,
617
+ 0.65,
618
+ 0.63,
619
+ 0.65,
620
+ 0.65,
621
+ 0.65,
622
+ 0.65,
623
+ 0.65,
624
+ 0.65,
625
+ 0.65,
626
+ 0.65,
627
+ 0.65,
628
+ 0.65,
629
+ 0.65,
630
+ 0.8,
631
+ 0.65,
632
+ 0.65,
633
+ 0.65,
634
+ 0.65,
635
+ 0.8,
636
+ 0.65,
637
+ 0.65,
638
+ 0.65,
639
+ 0.8,
640
+ 0.65,
641
+ 0.88,
642
+ 0.65,
643
+ 0.65,
644
+ 0.65,
645
+ 0.65,
646
+ 0.65,
647
+ 0.8,
648
+ 0.8,
649
+ 0.71,
650
+ 0.65,
651
+ 0.65,
652
+ 0.65,
653
+ 0.8,
654
+ 0.8,
655
+ 0.65,
656
+ 0.65,
657
+ 0.65,
658
+ 0.65,
659
+ 0.65,
660
+ 0.8,
661
+ 0.9,
662
+ 0.65,
663
+ 0.8,
664
+ 0.65,
665
+ 0.65,
666
+ 0.65,
667
+ 0.65,
668
+ 0.65,
669
+ 0.8,
670
+ 0.65,
671
+ 0.71,
672
+ 0.65,
673
+ 0.8,
674
+ 0.76,
675
+ 0.85,
676
+ 0.8,
677
+ 0.65,
678
+ 0.65,
679
+ 0.8,
680
+ 0.65,
681
+ 0.79,
682
+ 0.65,
683
+ 0.75,
684
+ 0.65,
685
+ 0.8,
686
+ 0.65,
687
+ 0.86,
688
+ 0.65,
689
+ 0.65,
690
+ 0.9,
691
+ 0.9,
692
+ 0.65,
693
+ 0.65,
694
+ 0.65,
695
+ 0.65,
696
+ 0.65,
697
+ 0.73,
698
+ 0.65,
699
+ 0.65,
700
+ 0.65,
701
+ 0.65,
702
+ 0.8,
703
+ 0.65,
704
+ 0.65,
705
+ 0.9,
706
+ 0.65,
707
+ 0.85,
708
+ 0.65,
709
+ 0.65,
710
+ 0.65,
711
+ 0.65,
712
+ 0.8,
713
+ 0.75,
714
+ 0.65,
715
+ 0.65,
716
+ 0.65,
717
+ 0.65,
718
+ 0.8,
719
+ 0.85,
720
+ 0.8,
721
+ 0.65,
722
+ 0.65,
723
+ 0.65,
724
+ 0.65,
725
+ 0.65,
726
+ 0.65,
727
+ 0.77,
728
+ 0.65,
729
+ 0.65,
730
+ 0.65,
731
+ 0.65,
732
+ 0.65,
733
+ 0.86,
734
+ 0.65,
735
+ 0.65,
736
+ 0.65,
737
+ 0.65,
738
+ 0.65,
739
+ 0.8,
740
+ 0.65,
741
+ 0.6,
742
+ 0.65,
743
+ 0.65,
744
+ 0.65,
745
+ 0.65,
746
+ 0.65,
747
+ 0.65,
748
+ 0.65,
749
+ 0.65,
750
+ 0.65,
751
+ 0.65,
752
+ 0.74,
753
+ 0.65,
754
+ 0.65,
755
+ 0.67,
756
+ 0.65,
757
+ 0.65,
758
+ 0.8,
759
+ 0.65,
760
+ 0.65,
761
+ 0.85,
762
+ 0.65,
763
+ 0.8,
764
+ 0.65,
765
+ 0.65,
766
+ 0.84,
767
+ 0.8,
768
+ 0.8,
769
+ 0.8,
770
+ 0.8,
771
+ 0.8,
772
+ 0.65,
773
+ 0.65,
774
+ 0.65,
775
+ 0.65,
776
+ 0.65,
777
+ 0.65,
778
+ 0.8,
779
+ 0.65,
780
+ 0.9,
781
+ 0.9,
782
+ 0.65,
783
+ 0.65,
784
+ 0.65,
785
+ 0.65,
786
+ 0.65,
787
+ 0.65,
788
+ 0.65,
789
+ 0.8,
790
+ 0.65,
791
+ 0.65,
792
+ 0.65,
793
+ 0.8,
794
+ 0.89,
795
+ 0.65,
796
+ 0.65,
797
+ 0.65,
798
+ 0.83,
799
+ 0.65,
800
+ 0.65,
801
+ 0.65,
802
+ 0.65,
803
+ 0.6,
804
+ 0.65,
805
+ 0.8,
806
+ 0.8,
807
+ 0.8,
808
+ 0.65,
809
+ 0.65,
810
+ 0.89,
811
+ 0.65,
812
+ 0.65,
813
+ 0.65,
814
+ 0.65,
815
+ 0.8,
816
+ 0.65,
817
+ 0.65,
818
+ 0.8,
819
+ 0.65,
820
+ 0.8,
821
+ 0.65,
822
+ 0.77,
823
+ 0.65,
824
+ 0.65,
825
+ 0.65,
826
+ 0.65,
827
+ 0.65,
828
+ 0.65,
829
+ 0.65,
830
+ 0.65,
831
+ 0.65,
832
+ 0.65,
833
+ 0.65,
834
+ 0.65,
835
+ 0.65,
836
+ 0.65,
837
+ 0.65,
838
+ 0.65,
839
+ 0.65,
840
+ 0.65,
841
+ 0.65,
842
+ 0.65,
843
+ 0.65,
844
+ 0.65,
845
+ 0.65,
846
+ 0.65,
847
+ 0.87,
848
+ 0.65,
849
+ 0.65,
850
+ 0.65,
851
+ 0.65,
852
+ 0.65,
853
+ 0.65,
854
+ 0.65,
855
+ 0.65,
856
+ 0.74,
857
+ 0.65,
858
+ 0.65,
859
+ 0.66,
860
+ 0.89,
861
+ 0.65,
862
+ 0.65,
863
+ 0.65,
864
+ 0.65,
865
+ 0.65,
866
+ 0.65,
867
+ 0.65,
868
+ 0.65,
869
+ 0.65,
870
+ 0.65,
871
+ 0.65,
872
+ 0.9,
873
+ 0.65,
874
+ 0.65,
875
+ 0.65,
876
+ 0.65,
877
+ 0.65,
878
+ 0.65,
879
+ 0.65,
880
+ 0.84,
881
+ 0.65,
882
+ 0.65,
883
+ 0.65,
884
+ 0.65,
885
+ 0.65,
886
+ 0.65,
887
+ 0.65,
888
+ 0.65,
889
+ 0.65,
890
+ 0.65,
891
+ 0.65,
892
+ 0.65,
893
+ 0.65,
894
+ 0.65,
895
+ 0.65,
896
+ 0.8,
897
+ 0.65,
898
+ 0.65,
899
+ 0.65,
900
+ 0.65,
901
+ 0.65,
902
+ 0.65,
903
+ 0.65,
904
+ 0.65,
905
+ 0.65,
906
+ 0.8,
907
+ 0.65,
908
+ 0.88,
909
+ 0.65,
910
+ 0.65,
911
+ 0.8,
912
+ 0.65,
913
+ 0.65,
914
+ 0.7,
915
+ 0.65,
916
+ 0.65,
917
+ 0.65,
918
+ 0.9,
919
+ 0.65,
920
+ 0.9,
921
+ 0.65,
922
+ 0.65,
923
+ 0.65,
924
+ 0.65,
925
+ 0.65,
926
+ 0.65,
927
+ 0.65,
928
+ 0.8,
929
+ 0.8,
930
+ 0.65,
931
+ 0.8,
932
+ 0.65,
933
+ 0.65,
934
+ 0.65,
935
+ 0.65,
936
+ 0.65,
937
+ 0.8,
938
+ 0.65,
939
+ 0.65,
940
+ 0.65,
941
+ 0.65,
942
+ 0.65,
943
+ 0.65,
944
+ 0.82,
945
+ 0.65,
946
+ 0.65,
947
+ 0.65,
948
+ 0.65,
949
+ 0.65,
950
+ 0.8,
951
+ 0.8,
952
+ 0.9,
953
+ 0.65,
954
+ 0.65,
955
+ 0.65,
956
+ 0.65,
957
+ 0.8,
958
+ 0.65,
959
+ 0.65,
960
+ 0.65,
961
+ 0.8,
962
+ 0.65,
963
+ 0.65,
964
+ 0.65,
965
+ 0.8,
966
+ 0.8,
967
+ 0.65,
968
+ 0.65,
969
+ 0.65,
970
+ 0.65,
971
+ 0.65,
972
+ 0.65,
973
+ 0.65,
974
+ 0.65,
975
+ 0.65,
976
+ 0.65,
977
+ 0.8,
978
+ 0.8,
979
+ 0.65,
980
+ 0.8,
981
+ 0.8,
982
+ 0.65,
983
+ 0.65,
984
+ 0.65,
985
+ 0.75,
986
+ 0.65,
987
+ 0.7,
988
+ 0.9,
989
+ 0.8,
990
+ 0.65,
991
+ 0.65,
992
+ 0.65,
993
+ 0.65,
994
+ 0.65,
995
+ 0.8,
996
+ 0.8,
997
+ 0.65,
998
+ 0.65,
999
+ 0.65,
1000
+ 0.65,
1001
+ 0.65,
1002
+ 0.65,
1003
+ 0.65,
1004
+ 0.88,
1005
+ 0.65,
1006
+ 0.65,
1007
+ 1,
1008
+ 0.65,
1009
+ 0.65,
1010
+ 0.65,
1011
+ 0.8,
1012
+ 0.65,
1013
+ 0.8,
1014
+ 0.65,
1015
+ 0.65,
1016
+ 0.65,
1017
+ 0.65,
1018
+ 0.65,
1019
+ 0.8,
1020
+ 0.8,
1021
+ 0.65,
1022
+ 0.65,
1023
+ 0.8,
1024
+ 0.65,
1025
+ 0.65,
1026
+ 0.8,
1027
+ 0.8,
1028
+ 0.65,
1029
+ 0.65,
1030
+ 0.8,
1031
+ 0.8,
1032
+ 0.65,
1033
+ 0.65,
1034
+ 0.65,
1035
+ 0.65,
1036
+ 0.65,
1037
+ 0.65,
1038
+ 0.8,
1039
+ 0.65,
1040
+ 0.65,
1041
+ 0.65,
1042
+ 0.65,
1043
+ 0.65,
1044
+ 0.65,
1045
+ 0.65,
1046
+ 0.65,
1047
+ 0.65,
1048
+ 0.65,
1049
+ 0.8,
1050
+ 0.65,
1051
+ 0.8,
1052
+ 0.65,
1053
+ 0.8,
1054
+ 0.8,
1055
+ 0.65,
1056
+ 0.8,
1057
+ 0.65,
1058
+ 0.65,
1059
+ 0.71,
1060
+ 0.65,
1061
+ 0.65,
1062
+ 0.65,
1063
+ 0.79,
1064
+ 0.65,
1065
+ 0.65,
1066
+ 0.65,
1067
+ 0.65,
1068
+ 0.65,
1069
+ 0.89,
1070
+ 0.65,
1071
+ 0.65,
1072
+ 0.8,
1073
+ 0.65,
1074
+ 0.65,
1075
+ 0.65,
1076
+ 0.65,
1077
+ 0.65,
1078
+ 0.8,
1079
+ 0.65,
1080
+ 0.65,
1081
+ 0.9,
1082
+ 0.65,
1083
+ 0.65,
1084
+ 0.65,
1085
+ 0.65,
1086
+ 0.65,
1087
+ 0.65,
1088
+ 0.65,
1089
+ 0.65,
1090
+ 0.65,
1091
+ 0.8,
1092
+ 0.65,
1093
+ 0.65,
1094
+ 0.65,
1095
+ 0.8,
1096
+ 0.65,
1097
+ 0.8,
1098
+ 0.65,
1099
+ 0.65,
1100
+ 0.65,
1101
+ 0.65,
1102
+ 0.65,
1103
+ 0.65,
1104
+ 0.65,
1105
+ 0.8,
1106
+ 0.65,
1107
+ 0.65,
1108
+ 0.65,
1109
+ 0.8,
1110
+ 0.65,
1111
+ 0.65,
1112
+ 0.65,
1113
+ 0.9,
1114
+ 0.65,
1115
+ 0.8,
1116
+ 0.65,
1117
+ 0.65,
1118
+ 0.65,
1119
+ 0.65,
1120
+ 0.65,
1121
+ 0.65,
1122
+ 0.88,
1123
+ 0.65,
1124
+ 0.65,
1125
+ 0.8,
1126
+ 0.65,
1127
+ 0.65,
1128
+ 0.65,
1129
+ 0.65,
1130
+ 0.65,
1131
+ 0.65,
1132
+ 0.65,
1133
+ 0.65,
1134
+ 0.65,
1135
+ 0.65,
1136
+ 0.8,
1137
+ 0.65,
1138
+ 0.65,
1139
+ 0.8,
1140
+ 0.65,
1141
+ 0.65,
1142
+ 0.82,
1143
+ 0.65,
1144
+ 0.9,
1145
+ 0.65,
1146
+ 0.65,
1147
+ 0.65,
1148
+ 0.65,
1149
+ 0.65,
1150
+ 0.8,
1151
+ 0.65,
1152
+ 0.8,
1153
+ 0.65,
1154
+ 0.65,
1155
+ 0.65,
1156
+ 0.8,
1157
+ 0.65,
1158
+ 0.9,
1159
+ 0.65,
1160
+ 0.65,
1161
+ 0.88,
1162
+ 0.65,
1163
+ 0.65,
1164
+ 0.65,
1165
+ 0.65,
1166
+ 0.9,
1167
+ 0.65,
1168
+ 0.65,
1169
+ 0.65,
1170
+ 0.8,
1171
+ 0.65,
1172
+ 0.65,
1173
+ 0.65,
1174
+ 0.65,
1175
+ 0.65,
1176
+ 0.65,
1177
+ 0.65,
1178
+ 0.9,
1179
+ 0.65,
1180
+ 0.65,
1181
+ 0.65,
1182
+ 0.65,
1183
+ 0.8,
1184
+ 0.65,
1185
+ 0.65,
1186
+ 0.65,
1187
+ 0.65,
1188
+ 0.65,
1189
+ 0.65,
1190
+ 0.65,
1191
+ 0.65,
1192
+ 0.65,
1193
+ 0.65,
1194
+ 0.65,
1195
+ 0.89,
1196
+ 0.65,
1197
+ 0.65,
1198
+ 0.8,
1199
+ 0.65,
1200
+ 0.65,
1201
+ 0.65,
1202
+ 0.87,
1203
+ 0.65,
1204
+ 0.66,
1205
+ 0.65,
1206
+ 0.84,
1207
+ 0.65,
1208
+ 0.8,
1209
+ 0.65,
1210
+ 0.65,
1211
+ 0.65,
1212
+ 0.65,
1213
+ 0.65,
1214
+ 0.65,
1215
+ 0.65,
1216
+ 0.65,
1217
+ 0.65,
1218
+ 0.65,
1219
+ 0.65,
1220
+ 0.84,
1221
+ 0.65,
1222
+ 0.65,
1223
+ 0.65,
1224
+ 0.65,
1225
+ 0.65,
1226
+ 0.9,
1227
+ 0.8,
1228
+ 0.65,
1229
+ 0.65,
1230
+ 0.65,
1231
+ 0.65,
1232
+ 0.65,
1233
+ 0.5,
1234
+ 0.65,
1235
+ 0.64,
1236
+ 0.65,
1237
+ 0.65,
1238
+ 0.8,
1239
+ 0.8,
1240
+ 0.65,
1241
+ 0.65,
1242
+ 0.65,
1243
+ 0.65,
1244
+ 0.65,
1245
+ 0.65,
1246
+ 0.65,
1247
+ 0.65,
1248
+ 0.81,
1249
+ 0.65,
1250
+ 0.65,
1251
+ 0.65,
1252
+ 0.65,
1253
+ 0.65,
1254
+ 0.65,
1255
+ 0.65,
1256
+ 0.65,
1257
+ 0.65,
1258
+ 0.8,
1259
+ 0.65,
1260
+ 0.65,
1261
+ 0.8,
1262
+ 0.65,
1263
+ 0.8,
1264
+ 0.8,
1265
+ 0.65,
1266
+ 0.65,
1267
+ 0.65,
1268
+ 0.8,
1269
+ 0.8,
1270
+ 0.65,
1271
+ 0.65,
1272
+ 0.8,
1273
+ 0.65,
1274
+ 0.65,
1275
+ 0.65,
1276
+ 0.65,
1277
+ 0.65,
1278
+ 0.8,
1279
+ 0.65,
1280
+ 0.8,
1281
+ 0.8,
1282
+ 0.65,
1283
+ 0.84,
1284
+ 0.65,
1285
+ 0.65,
1286
+ 0.65,
1287
+ 0.65,
1288
+ 0.65,
1289
+ 0.8,
1290
+ 0.65,
1291
+ 0.65,
1292
+ 0.65,
1293
+ 0.65,
1294
+ 0.65,
1295
+ 0.65,
1296
+ 0.65,
1297
+ 0.65,
1298
+ 0.9,
1299
+ 0.65,
1300
+ 0.8,
1301
+ 0.65,
1302
+ 0.85,
1303
+ 0.65,
1304
+ 0.65,
1305
+ 0.65,
1306
+ 0.9,
1307
+ 0.65,
1308
+ 0.65,
1309
+ 0.65,
1310
+ 0.65,
1311
+ 0.65,
1312
+ 0.8,
1313
+ 0.65,
1314
+ 0.65,
1315
+ 0.65,
1316
+ 0.73,
1317
+ 0.65,
1318
+ 0.65,
1319
+ 0.8,
1320
+ 0.65,
1321
+ 0.65,
1322
+ 0.8,
1323
+ 0.65,
1324
+ 0.8,
1325
+ 0.65,
1326
+ 0.65,
1327
+ 0.86,
1328
+ 0.65,
1329
+ 0.65,
1330
+ 0.65,
1331
+ 0.65,
1332
+ 0.87,
1333
+ 0.65,
1334
+ 0.65,
1335
+ 0.8,
1336
+ 0.65,
1337
+ 0.65,
1338
+ 0.65,
1339
+ 0.65,
1340
+ 0.65,
1341
+ 0.65,
1342
+ 0.65,
1343
+ 0.8,
1344
+ 0.65,
1345
+ 0.65,
1346
+ 0.65,
1347
+ 0.65,
1348
+ 0.65,
1349
+ 0.65,
1350
+ 0.65,
1351
+ 0.8,
1352
+ 0.65,
1353
+ 0.65,
1354
+ 0.8,
1355
+ 0.65,
1356
+ 0.65,
1357
+ 0.65,
1358
+ 0.65,
1359
+ 0.65,
1360
+ 0.8,
1361
+ 0.8,
1362
+ 0.8,
1363
+ 0.65,
1364
+ 0.9,
1365
+ 0.65,
1366
+ 0.65,
1367
+ 0.65,
1368
+ 0.65,
1369
+ 0.65,
1370
+ 0.65,
1371
+ 0.8,
1372
+ 0.65,
1373
+ 0.65,
1374
+ 0.82,
1375
+ 0.8,
1376
+ 0.65,
1377
+ 0.65,
1378
+ 0.65,
1379
+ 0.84,
1380
+ 0.9,
1381
+ 0.9,
1382
+ 0.65,
1383
+ 0.65,
1384
+ 0.65,
1385
+ 0.65,
1386
+ 0.65,
1387
+ 0.65,
1388
+ 0.65,
1389
+ 0.65,
1390
+ 0.65,
1391
+ 0.8,
1392
+ 0.64,
1393
+ 0.65,
1394
+ 0.65,
1395
+ 0.65,
1396
+ 0.8,
1397
+ 0.8,
1398
+ 0.87,
1399
+ 0.65,
1400
+ 0.65,
1401
+ 0.78,
1402
+ 0.65,
1403
+ 0.65,
1404
+ 0.65,
1405
+ 0.65,
1406
+ 0.65,
1407
+ 0.65,
1408
+ 0.65,
1409
+ 0.65,
1410
+ 0.65,
1411
+ 0.65,
1412
+ 0.8,
1413
+ 0.65,
1414
+ 0.8,
1415
+ 0.8,
1416
+ 0.8,
1417
+ 0.65,
1418
+ 0.8,
1419
+ 0.65,
1420
+ 0.65,
1421
+ 0.65,
1422
+ 0.8,
1423
+ 0.65,
1424
+ 0.9,
1425
+ 0.65,
1426
+ 0.65,
1427
+ 0.8,
1428
+ 0.65,
1429
+ 0.85,
1430
+ 0.65,
1431
+ 0.65,
1432
+ 0.65,
1433
+ 0.65,
1434
+ 0.65,
1435
+ 0.65,
1436
+ 0.65,
1437
+ 0.74,
1438
+ 0.65,
1439
+ 0.8,
1440
+ 0.65,
1441
+ 0.65,
1442
+ 0.8,
1443
+ 0.65,
1444
+ 0.65,
1445
+ 0.65,
1446
+ 0.65,
1447
+ 0.65,
1448
+ 0.65,
1449
+ 0.65,
1450
+ 0.8,
1451
+ 0.65,
1452
+ 0.88,
1453
+ 0.65,
1454
+ 0.65,
1455
+ 0.65,
1456
+ 0.65,
1457
+ 0.65,
1458
+ 0.65,
1459
+ 0.83,
1460
+ 0.89,
1461
+ 0.89,
1462
+ 0.65,
1463
+ 0.65,
1464
+ 0.65,
1465
+ 0.65,
1466
+ 0.65,
1467
+ 0.65,
1468
+ 0.65,
1469
+ 0.9,
1470
+ 0.65,
1471
+ 0.65,
1472
+ 0.65,
1473
+ 0.65,
1474
+ 0.65,
1475
+ 0.65,
1476
+ 0.8,
1477
+ 0.65,
1478
+ 0.65,
1479
+ 0.65,
1480
+ 0.65,
1481
+ 0.65,
1482
+ 0.65,
1483
+ 0.86,
1484
+ 0.65,
1485
+ 0.65,
1486
+ 0.65,
1487
+ 0.65,
1488
+ 0.65,
1489
+ 0.65,
1490
+ 0.65,
1491
+ 0.65,
1492
+ 0.65,
1493
+ 0.65,
1494
+ 0.8,
1495
+ 0.65,
1496
+ 0.65,
1497
+ 0.65,
1498
+ 0.65,
1499
+ 0.65,
1500
+ 0.65,
1501
+ 0.65,
1502
+ 0.65,
1503
+ 0.65,
1504
+ 0.65,
1505
+ 0.65,
1506
+ 0.65,
1507
+ 0.8,
1508
+ 0.8,
1509
+ 0.65,
1510
+ 0.65,
1511
+ 0.65,
1512
+ 0.65,
1513
+ 0.65,
1514
+ 0.65,
1515
+ 0.65,
1516
+ 0.65,
1517
+ 0.65,
1518
+ 0.8,
1519
+ 0.65,
1520
+ 0.65,
1521
+ 0.65,
1522
+ 0.65,
1523
+ 0.65,
1524
+ 0.65,
1525
+ 0.65,
1526
+ 0.65,
1527
+ 0.65,
1528
+ 0.65,
1529
+ 0.8,
1530
+ 0.65,
1531
+ 0.65,
1532
+ 0.8,
1533
+ 0.65,
1534
+ 0.65,
1535
+ 0.65,
1536
+ 0.65,
1537
+ 0.8,
1538
+ 0.65,
1539
+ 0.65,
1540
+ 0.65,
1541
+ 0.8,
1542
+ 0.65,
1543
+ 0.8,
1544
+ 0.65,
1545
+ 0.65,
1546
+ 0.65,
1547
+ 0.65,
1548
+ 0.65,
1549
+ 0.65,
1550
+ 0.65,
1551
+ 0.8,
1552
+ 0.65,
1553
+ 0.65,
1554
+ 0.65,
1555
+ 0.8,
1556
+ 0.65,
1557
+ 0.8,
1558
+ 0.8,
1559
+ 0.65,
1560
+ 0.65,
1561
+ 0.65,
1562
+ 0.65,
1563
+ 0.65,
1564
+ 0.8,
1565
+ 0.65,
1566
+ 0.65,
1567
+ 0.65,
1568
+ 0.65,
1569
+ 0.65,
1570
+ 0.8,
1571
+ 0.8,
1572
+ 0.65,
1573
+ 0.65,
1574
+ 0.65,
1575
+ 0.8,
1576
+ 0.65,
1577
+ 0.8,
1578
+ 0.8,
1579
+ 0.65,
1580
+ 0.65,
1581
+ 0.8,
1582
+ 0.65,
1583
+ 0.65,
1584
+ 0.65,
1585
+ 0.65,
1586
+ 0.65,
1587
+ 0.65,
1588
+ 0.8,
1589
+ 0.65,
1590
+ 0.65,
1591
+ 0.8,
1592
+ 0.85,
1593
+ 0.65,
1594
+ 0.65,
1595
+ 0.65,
1596
+ 0.65,
1597
+ 0.65,
1598
+ 0.8,
1599
+ 0.65,
1600
+ 0.8,
1601
+ 0.65,
1602
+ 0.65,
1603
+ 0.65,
1604
+ 0.65,
1605
+ 0.65,
1606
+ 0.8,
1607
+ 0.65,
1608
+ 0.65,
1609
+ 0.65,
1610
+ 0.9,
1611
+ 0.65,
1612
+ 0.65,
1613
+ 0.9,
1614
+ 0.65,
1615
+ 0.65,
1616
+ 0.65,
1617
+ 0.9,
1618
+ 0.65,
1619
+ 0.65,
1620
+ 0.8,
1621
+ 0.65,
1622
+ 0.65,
1623
+ 0.65,
1624
+ 0.65,
1625
+ 0.65,
1626
+ 0.8,
1627
+ 0.65,
1628
+ 0.8,
1629
+ 0.65,
1630
+ 0.65,
1631
+ 0.65,
1632
+ 0.65,
1633
+ 0.65,
1634
+ 0.65,
1635
+ 0.8,
1636
+ 0.65,
1637
+ 0.65,
1638
+ 0.65,
1639
+ 0.86,
1640
+ 0.65,
1641
+ 0.65,
1642
+ 0.65,
1643
+ 0.65,
1644
+ 0.65,
1645
+ 0.65,
1646
+ 0.65,
1647
+ 0.65,
1648
+ 0.87,
1649
+ 0.8,
1650
+ 0.84,
1651
+ 0.65,
1652
+ 0.65,
1653
+ 0.8,
1654
+ 0.65,
1655
+ 0.65,
1656
+ 0.65,
1657
+ 0.65,
1658
+ 0.8,
1659
+ 0.65,
1660
+ 0.8,
1661
+ 0.65,
1662
+ 0.65,
1663
+ 0.65,
1664
+ 0.65,
1665
+ 0.65,
1666
+ 0.8,
1667
+ 0.65,
1668
+ 0.65,
1669
+ 0.8,
1670
+ 0.65,
1671
+ 0.65,
1672
+ 0.8,
1673
+ 0.81,
1674
+ 0.65,
1675
+ 0.65,
1676
+ 0.65,
1677
+ 0.8,
1678
+ 0.65,
1679
+ 0.8,
1680
+ 0.65,
1681
+ 0.65,
1682
+ 0.65,
1683
+ 0.65,
1684
+ 0.65,
1685
+ 0.8,
1686
+ 0.65,
1687
+ 0.65,
1688
+ 0.65,
1689
+ 0.65,
1690
+ 0.8,
1691
+ 0.8,
1692
+ 0.65,
1693
+ 0.7,
1694
+ 0.65,
1695
+ 0.65,
1696
+ 0.8,
1697
+ 0.65,
1698
+ 0.65,
1699
+ 0.65,
1700
+ 0.65,
1701
+ 0.65,
1702
+ 0.8,
1703
+ 0.82,
1704
+ 0.65,
1705
+ 0.65,
1706
+ 0.65,
1707
+ 0.65,
1708
+ 0.65,
1709
+ 0.65,
1710
+ 0.65,
1711
+ 0.65,
1712
+ 0.65,
1713
+ 0.8,
1714
+ 0.65,
1715
+ 0.65,
1716
+ 0.87,
1717
+ 0.65,
1718
+ 0.9,
1719
+ 0.8,
1720
+ 0.65,
1721
+ 0.65,
1722
+ 0.65,
1723
+ 0.9,
1724
+ 0.65,
1725
+ 0.65,
1726
+ 0.65,
1727
+ 0.65,
1728
+ 0.65,
1729
+ 0.8,
1730
+ 0.7,
1731
+ 0.65,
1732
+ 0.65,
1733
+ 0.65,
1734
+ 0.65,
1735
+ 0.65,
1736
+ 0.65,
1737
+ 0.8,
1738
+ 0.65,
1739
+ 0.9,
1740
+ 0.65,
1741
+ 0.65,
1742
+ 0.65,
1743
+ 0.65,
1744
+ 0.65,
1745
+ 0.65,
1746
+ 0.8,
1747
+ 0.65,
1748
+ 0.8,
1749
+ 0.8,
1750
+ 0.65,
1751
+ 0.65,
1752
+ 0.65,
1753
+ 0.65,
1754
+ 0.65,
1755
+ 0.65,
1756
+ 0.65,
1757
+ 0.85,
1758
+ 0.65,
1759
+ 0.65,
1760
+ 0.65,
1761
+ 0.65,
1762
+ 0.65,
1763
+ 0.73,
1764
+ 0.65,
1765
+ 0.8,
1766
+ 0.65,
1767
+ 0.65,
1768
+ 0.65,
1769
+ 0.65,
1770
+ 0.65,
1771
+ 0.65,
1772
+ 0.65,
1773
+ 0.65,
1774
+ 0.9,
1775
+ 0.65,
1776
+ 0.89,
1777
+ 0.8,
1778
+ 0.65,
1779
+ 0.9,
1780
+ 0.65,
1781
+ 1,
1782
+ 0.65,
1783
+ 0.65,
1784
+ 0.65,
1785
+ 0.65,
1786
+ 0.9,
1787
+ 0.65,
1788
+ 0.65,
1789
+ 0.65,
1790
+ 0.65,
1791
+ 0.89,
1792
+ 0.89,
1793
+ 0.65,
1794
+ 0.65,
1795
+ 0.65,
1796
+ 0.8,
1797
+ 0.75,
1798
+ 0.65,
1799
+ 0.65,
1800
+ 0.65,
1801
+ 0.65,
1802
+ 0.65,
1803
+ 0.65,
1804
+ 0.65,
1805
+ 0.8,
1806
+ 0.65,
1807
+ 0.65,
1808
+ 0.65,
1809
+ 0.65,
1810
+ 0.8,
1811
+ 0.65,
1812
+ 0.65,
1813
+ 0.65,
1814
+ 0.65,
1815
+ 0.65,
1816
+ 0.8,
1817
+ 0.65,
1818
+ 0.65,
1819
+ 0.65,
1820
+ 0.8,
1821
+ 0.8,
1822
+ 0.8,
1823
+ 0.65,
1824
+ 0.65,
1825
+ 0.88,
1826
+ 0.65,
1827
+ 0.8,
1828
+ 0.65,
1829
+ 0.65,
1830
+ 0.8,
1831
+ 0.85,
1832
+ 0.65,
1833
+ 0.65,
1834
+ 0.65,
1835
+ 0.65,
1836
+ 0.65,
1837
+ 0.65,
1838
+ 0.65,
1839
+ 0.8,
1840
+ 0.65,
1841
+ 0.65,
1842
+ 0.8,
1843
+ 0.9,
1844
+ 0.57,
1845
+ 0.65,
1846
+ 0.8,
1847
+ 0.65,
1848
+ 0.65,
1849
+ 0.65,
1850
+ 0.8,
1851
+ 0.65,
1852
+ 0.65,
1853
+ 0.65,
1854
+ 0.65,
1855
+ 0.65,
1856
+ 0.65,
1857
+ 0.65,
1858
+ 0.8,
1859
+ 0.65,
1860
+ 0.65,
1861
+ 0.8,
1862
+ 0.65,
1863
+ 0.65,
1864
+ 0.65,
1865
+ 0.65,
1866
+ 0.65,
1867
+ 0.65,
1868
+ 0.65,
1869
+ 0.65,
1870
+ 0.65,
1871
+ 0.9,
1872
+ 0.8,
1873
+ 0.8,
1874
+ 0.79,
1875
+ 0.65,
1876
+ 0.65,
1877
+ 0.8,
1878
+ 0.65,
1879
+ 0.65,
1880
+ 0.65,
1881
+ 0.65,
1882
+ 0.65,
1883
+ 0.65,
1884
+ 0.65,
1885
+ 0.65,
1886
+ 0.65,
1887
+ 0.65,
1888
+ 0.65,
1889
+ 0.8,
1890
+ 0.65,
1891
+ 0.65,
1892
+ 0.65,
1893
+ 0.8,
1894
+ 0.89,
1895
+ 0.8,
1896
+ 0.65,
1897
+ 0.8,
1898
+ 0.65,
1899
+ 0.8,
1900
+ 0.65,
1901
+ 0.81,
1902
+ 0.65,
1903
+ 0.65,
1904
+ 0.65,
1905
+ 0.8,
1906
+ 0.65,
1907
+ 0.65,
1908
+ 0.65,
1909
+ 0.65,
1910
+ 0.89,
1911
+ 0.65,
1912
+ 0.65,
1913
+ 0.65,
1914
+ 0.65,
1915
+ 0.65,
1916
+ 0.89,
1917
+ 0.84,
1918
+ 0.65,
1919
+ 0.65,
1920
+ 0.65,
1921
+ 0.65,
1922
+ 0.8,
1923
+ 0.65,
1924
+ 0.9,
1925
+ 0.65,
1926
+ 0.65,
1927
+ 0.65,
1928
+ 0.65,
1929
+ 0.65,
1930
+ 0.65,
1931
+ 0.65,
1932
+ 0.65,
1933
+ 0.89,
1934
+ 0.65,
1935
+ 0.8,
1936
+ 0.83,
1937
+ 0.65,
1938
+ 0.65,
1939
+ 0.8,
1940
+ 0.65,
1941
+ 0.65,
1942
+ 0.72,
1943
+ 0.65,
1944
+ 0.65,
1945
+ 0.65,
1946
+ 0.8,
1947
+ 0.8,
1948
+ 0.65,
1949
+ 0.8,
1950
+ 0.65,
1951
+ 0.65,
1952
+ 0.65,
1953
+ 0.8,
1954
+ 0.65,
1955
+ 0.65,
1956
+ 0.65,
1957
+ 0.8,
1958
+ 0.65,
1959
+ 0.65,
1960
+ 0.65,
1961
+ 0.65,
1962
+ 0.65,
1963
+ 0.65,
1964
+ 0.65,
1965
+ 0.65,
1966
+ 1,
1967
+ 0.65,
1968
+ 0.65,
1969
+ 0.8,
1970
+ 0.65,
1971
+ 0.65,
1972
+ 0.65,
1973
+ 0.65,
1974
+ 0.65,
1975
+ 0.8,
1976
+ 0.65,
1977
+ 0.9,
1978
+ 0.65,
1979
+ 0.65,
1980
+ 0.89,
1981
+ 0.65,
1982
+ 0.65,
1983
+ 0.65,
1984
+ 0.65,
1985
+ 0.9,
1986
+ 0.65,
1987
+ 0.65,
1988
+ 0.65,
1989
+ 0.65,
1990
+ 0.8,
1991
+ 0.65,
1992
+ 0.65,
1993
+ 0.65,
1994
+ 0.65,
1995
+ 0.65,
1996
+ 0.65,
1997
+ 0.65,
1998
+ 0.8,
1999
+ 0.8,
2000
+ 0.65,
2001
+ 0.69,
2002
+ 0.8,
2003
+ 0.65,
2004
+ 0.65,
2005
+ 0.65,
2006
+ 0.9,
2007
+ 0.65,
2008
+ 0.65,
2009
+ 0.65,
2010
+ 0.65,
2011
+ 0.71,
2012
+ 0.65,
2013
+ 0.65,
2014
+ 0.65,
2015
+ 0.88,
2016
+ 0.65,
2017
+ 0.65,
2018
+ 0.65,
2019
+ 0.65,
2020
+ 0.8,
2021
+ 0.65,
2022
+ 0.65,
2023
+ 0.65,
2024
+ 0.85,
2025
+ 0.65,
2026
+ 0.8,
2027
+ 0.65,
2028
+ 0.65,
2029
+ 0.65,
2030
+ 0.8,
2031
+ 0.65,
2032
+ 0.65,
2033
+ 0.65,
2034
+ 0.65,
2035
+ 0.65,
2036
+ 0.65,
2037
+ 0.65,
2038
+ 0.65,
2039
+ 0.65,
2040
+ 0.65,
2041
+ 0.65,
2042
+ 0.65,
2043
+ 0.65,
2044
+ 0.65,
2045
+ 0.87,
2046
+ 0.65,
2047
+ 0.65,
2048
+ 0.65,
2049
+ 0.65,
2050
+ 0.65,
2051
+ 0.65,
2052
+ 0.8,
2053
+ 0.65,
2054
+ 0.65,
2055
+ 0.65,
2056
+ 0.65,
2057
+ 0.65,
2058
+ 0.65,
2059
+ 0.65,
2060
+ 0.8,
2061
+ 0.65,
2062
+ 0.65,
2063
+ 0.65,
2064
+ 0.65,
2065
+ 0.65,
2066
+ 0.9,
2067
+ 0.8,
2068
+ 0.9,
2069
+ 0.65,
2070
+ 0.8,
2071
+ 0.8,
2072
+ 0.65,
2073
+ 0.65,
2074
+ 0.8,
2075
+ 0.8,
2076
+ 0.65,
2077
+ 0.8,
2078
+ 0.65,
2079
+ 0.65,
2080
+ 0.65,
2081
+ 0.65,
2082
+ 0.65,
2083
+ 0.65,
2084
+ 0.65,
2085
+ 0.65,
2086
+ 0.8,
2087
+ 0.8,
2088
+ 0.65,
2089
+ 0.65,
2090
+ 0.8,
2091
+ 0.65,
2092
+ 0.65,
2093
+ 0.65,
2094
+ 0.65,
2095
+ 0.65,
2096
+ 0.65,
2097
+ 0.65,
2098
+ 0.65,
2099
+ 0.65,
2100
+ 0.8,
2101
+ 0.8,
2102
+ 0.65,
2103
+ 0.65,
2104
+ 0.65,
2105
+ 0.65,
2106
+ 0.65,
2107
+ 0.65,
2108
+ 0.8,
2109
+ 0.8,
2110
+ 0.65,
2111
+ 0.65,
2112
+ 0.8,
2113
+ 0.65,
2114
+ 0.65,
2115
+ 0.8,
2116
+ 0.65,
2117
+ 0.8,
2118
+ 0.65,
2119
+ 0.65,
2120
+ 0.65,
2121
+ 0.65,
2122
+ 0.65,
2123
+ 0.65,
2124
+ 0.8,
2125
+ 0.8,
2126
+ 0.65,
2127
+ 0.8,
2128
+ 0.65,
2129
+ 0.65,
2130
+ 0.65,
2131
+ 0.65,
2132
+ 0.65,
2133
+ 0.65,
2134
+ 0.65,
2135
+ 0.65,
2136
+ 0.65,
2137
+ 0.65,
2138
+ 0.65,
2139
+ 0.65,
2140
+ 0.65,
2141
+ 0.8,
2142
+ 0.65,
2143
+ 0.65,
2144
+ 0.65,
2145
+ 0.8,
2146
+ 0.8,
2147
+ 0.65,
2148
+ 0.85,
2149
+ 0.65,
2150
+ 0.65,
2151
+ 0.8,
2152
+ 0.65,
2153
+ 0.89,
2154
+ 0.65,
2155
+ 0.65,
2156
+ 0.9,
2157
+ 0.8,
2158
+ 0.65,
2159
+ 0.65,
2160
+ 0.65,
2161
+ 0.65,
2162
+ 0.8,
2163
+ 0.65,
2164
+ 0.86,
2165
+ 0.65,
2166
+ 0.77,
2167
+ 0.65,
2168
+ 0.65,
2169
+ 0.65,
2170
+ 0.65,
2171
+ 0.65,
2172
+ 0.65,
2173
+ 0.65,
2174
+ 0.65,
2175
+ 0.65,
2176
+ 0.65,
2177
+ 0.9,
2178
+ 0.65,
2179
+ 0.8,
2180
+ 0.65,
2181
+ 0.65,
2182
+ 0.65,
2183
+ 0.9,
2184
+ 0.65,
2185
+ 0.65,
2186
+ 0.65,
2187
+ 0.65,
2188
+ 0.65,
2189
+ 0.65,
2190
+ 0.65,
2191
+ 0.65,
2192
+ 0.65,
2193
+ 0.65,
2194
+ 0.65,
2195
+ 0.65,
2196
+ 0.65,
2197
+ 0.65,
2198
+ 0.65,
2199
+ 0.65,
2200
+ 0.8,
2201
+ 0.65,
2202
+ 0.65,
2203
+ 0.65,
2204
+ 0.9,
2205
+ 0.65,
2206
+ 0.65,
2207
+ 0.8,
2208
+ 0.8,
2209
+ 0.65,
2210
+ 0.65,
2211
+ 0.65,
2212
+ 0.65,
2213
+ 0.8,
2214
+ 0.65,
2215
+ 0.65,
2216
+ 0.65,
2217
+ 0.65,
2218
+ 0.65,
2219
+ 0.65,
2220
+ 0.65,
2221
+ 0.65,
2222
+ 0.8,
2223
+ 0.65,
2224
+ 0.65,
2225
+ 0.65,
2226
+ 0.65,
2227
+ 0.65,
2228
+ 0.65,
2229
+ 0.8,
2230
+ 0.65,
2231
+ 0.65,
2232
+ 0.8,
2233
+ 0.65,
2234
+ 0.65,
2235
+ 0.8,
2236
+ 0.8,
2237
+ 0.8,
2238
+ 0.65,
2239
+ 0.65,
2240
+ 0.65,
2241
+ 0.65,
2242
+ 0.8,
2243
+ 0.65,
2244
+ 0.65,
2245
+ 0.65,
2246
+ 0.65,
2247
+ 0.65,
2248
+ 0.89,
2249
+ 0.65,
2250
+ 0.65,
2251
+ 0.65,
2252
+ 0.65,
2253
+ 0.65,
2254
+ 0.65,
2255
+ 0.65,
2256
+ 0.8,
2257
+ 0.65,
2258
+ 0.65,
2259
+ 0.65,
2260
+ 0.65,
2261
+ 0.65,
2262
+ 0.65,
2263
+ 0.65,
2264
+ 0.65,
2265
+ 0.65,
2266
+ 0.65,
2267
+ 0.65,
2268
+ 0.65,
2269
+ 0.8,
2270
+ 0.65,
2271
+ 0.65,
2272
+ 0.65,
2273
+ 0.75,
2274
+ 0.8,
2275
+ 0.65,
2276
+ 0.8,
2277
+ 0.88,
2278
+ 0.65,
2279
+ 0.65,
2280
+ 0.65,
2281
+ 0.65,
2282
+ 0.65,
2283
+ 0.65,
2284
+ 0.65,
2285
+ 0.65,
2286
+ 0.65,
2287
+ 0.65,
2288
+ 0.65,
2289
+ 0.65,
2290
+ 0.65,
2291
+ 0.65,
2292
+ 0.65,
2293
+ 0.65,
2294
+ 0.65,
2295
+ 0.8,
2296
+ 0.65,
2297
+ 0.65,
2298
+ 0.65,
2299
+ 0.88,
2300
+ 0.65,
2301
+ 0.65,
2302
+ 0.65,
2303
+ 0.65,
2304
+ 0.65,
2305
+ 0.65,
2306
+ 0.65,
2307
+ 0.65,
2308
+ 0.65,
2309
+ 0.8,
2310
+ 0.65,
2311
+ 0.82,
2312
+ 0.65,
2313
+ 0.65,
2314
+ 0.8,
2315
+ 0.65,
2316
+ 0.8,
2317
+ 0.65,
2318
+ 0.9,
2319
+ 0.65,
2320
+ 0.65,
2321
+ 0.65,
2322
+ 0.65,
2323
+ 0.65,
2324
+ 0.65,
2325
+ 0.65,
2326
+ 0.65,
2327
+ 0.65,
2328
+ 0.65,
2329
+ 0.83,
2330
+ 0.65,
2331
+ 0.65,
2332
+ 0.92,
2333
+ 0.89,
2334
+ 0.8,
2335
+ 0.8,
2336
+ 0.65,
2337
+ 0.65,
2338
+ 0.65,
2339
+ 0.65,
2340
+ 0.75,
2341
+ 0.65,
2342
+ 0.65,
2343
+ 0.65,
2344
+ 0.65,
2345
+ 0.8,
2346
+ 0.65,
2347
+ 0.65,
2348
+ 0.8,
2349
+ 0.65,
2350
+ 0.65,
2351
+ 0.65,
2352
+ 0.85,
2353
+ 0.65,
2354
+ 0.8,
2355
+ 0.65,
2356
+ 0.65,
2357
+ 0.65,
2358
+ 0.65,
2359
+ 0.65,
2360
+ 0.65,
2361
+ 0.65,
2362
+ 0.65,
2363
+ 0.8,
2364
+ 0.65,
2365
+ 0.65,
2366
+ 0.65,
2367
+ 0.65,
2368
+ 0.65,
2369
+ 0.8,
2370
+ 0.65,
2371
+ 0.65,
2372
+ 0.87,
2373
+ 0.65,
2374
+ 0.79,
2375
+ 0.65,
2376
+ 0.65,
2377
+ 0.65,
2378
+ 0.65,
2379
+ 0.65,
2380
+ 0.65,
2381
+ 0.65,
2382
+ 0.65,
2383
+ 0.65,
2384
+ 0.65,
2385
+ 0.8,
2386
+ 0.65,
2387
+ 0.65,
2388
+ 0.65,
2389
+ 0.65,
2390
+ 0.65,
2391
+ 0.65,
2392
+ 0.65,
2393
+ 0.83,
2394
+ 0.8,
2395
+ 0.65,
2396
+ 0.65,
2397
+ 0.8,
2398
+ 0.8,
2399
+ 0.65,
2400
+ 0.7,
2401
+ 0.65,
2402
+ 0.65,
2403
+ 0.8,
2404
+ 0.65,
2405
+ 0.65,
2406
+ 0.8,
2407
+ 0.8,
2408
+ 0.65,
2409
+ 0.8,
2410
+ 0.65,
2411
+ 0.65,
2412
+ 0.65,
2413
+ 0.65,
2414
+ 0.9,
2415
+ 0.8,
2416
+ 0.65,
2417
+ 0.65,
2418
+ 0.65,
2419
+ 0.65,
2420
+ 0.7,
2421
+ 0.65,
2422
+ 0.65,
2423
+ 0.65,
2424
+ 0.65,
2425
+ 0.65,
2426
+ 0.65,
2427
+ 0.87,
2428
+ 0.65,
2429
+ 0.65,
2430
+ 0.65,
2431
+ 0.65,
2432
+ 0.8,
2433
+ 0.82,
2434
+ 0.65,
2435
+ 0.8,
2436
+ 0.65,
2437
+ 0.65,
2438
+ 0.9,
2439
+ 0.65,
2440
+ 0.65,
2441
+ 0.65,
2442
+ 0.65,
2443
+ 0.65,
2444
+ 1,
2445
+ 0.65,
2446
+ 0.65,
2447
+ 0.65,
2448
+ 0.65,
2449
+ 0.65,
2450
+ 0.65,
2451
+ 0.65,
2452
+ 0.65,
2453
+ 0.8,
2454
+ 0.64,
2455
+ 0.65,
2456
+ 0.65,
2457
+ 0.63,
2458
+ 0.65,
2459
+ 0.65,
2460
+ 0.65,
2461
+ 0.65,
2462
+ 0.8,
2463
+ 0.65,
2464
+ 0.65,
2465
+ 0.65,
2466
+ 0.65,
2467
+ 0.76,
2468
+ 0.65,
2469
+ 0.65,
2470
+ 0.65,
2471
+ 0.65,
2472
+ 0.8,
2473
+ 0.65,
2474
+ 0.8,
2475
+ 0.65,
2476
+ 0.8,
2477
+ 0.65,
2478
+ 0.75,
2479
+ 0.65,
2480
+ 0.65,
2481
+ 0.65,
2482
+ 0.8,
2483
+ 0.65,
2484
+ 0.65,
2485
+ 0.65,
2486
+ 0.65,
2487
+ 0.8,
2488
+ 0.65,
2489
+ 0.65,
2490
+ 0.8,
2491
+ 0.65,
2492
+ 0.65,
2493
+ 0.65,
2494
+ 0.65,
2495
+ 0.65,
2496
+ 0.65,
2497
+ 0.65,
2498
+ 0.65,
2499
+ 0.8,
2500
+ 0.65,
2501
+ 0.87,
2502
+ 0.65,
2503
+ 0.65,
2504
+ 0.8,
2505
+ 0.65,
2506
+ 0.65,
2507
+ 0.65,
2508
+ 0.65,
2509
+ 0.65,
2510
+ 0.65,
2511
+ 0.65,
2512
+ 0.65,
2513
+ 0.65,
2514
+ 0.65,
2515
+ 0.8,
2516
+ 0.65,
2517
+ 0.8,
2518
+ 0.65,
2519
+ 0.65,
2520
+ 0.65,
2521
+ 0.65,
2522
+ 0.65,
2523
+ 0.65,
2524
+ 0.65,
2525
+ 0.65,
2526
+ 0.65,
2527
+ 0.65,
2528
+ 0.65,
2529
+ 0.8,
2530
+ 0.65,
2531
+ 0.65,
2532
+ 0.65,
2533
+ 0.65,
2534
+ 0.65,
2535
+ 0.65,
2536
+ 0.65,
2537
+ 0.65,
2538
+ 0.8,
2539
+ 0.65,
2540
+ 0.8,
2541
+ 0.65,
2542
+ 0.65,
2543
+ 0.65,
2544
+ 0.65,
2545
+ 0.65,
2546
+ 0.8,
2547
+ 0.65,
2548
+ 0.82,
2549
+ 0.65,
2550
+ 0.65,
2551
+ 0.65,
2552
+ 0.65,
2553
+ 0.65,
2554
+ 0.8,
2555
+ 0.89,
2556
+ 0.65,
2557
+ 0.8,
2558
+ 0.65,
2559
+ 0.65,
2560
+ 0.65,
2561
+ 0.65,
2562
+ 0.65,
2563
+ 0.9,
2564
+ 0.65,
2565
+ 0.65,
2566
+ 0.65,
2567
+ 0.65,
2568
+ 0.65,
2569
+ 0.65,
2570
+ 0.8,
2571
+ 0.65,
2572
+ 0.65,
2573
+ 0.65,
2574
+ 0.65,
2575
+ 0.65,
2576
+ 0.65,
2577
+ 0.65,
2578
+ 0.65,
2579
+ 0.8,
2580
+ 0.65,
2581
+ 0.65,
2582
+ 0.65,
2583
+ 0.65,
2584
+ 0.65,
2585
+ 0.65,
2586
+ 0.65,
2587
+ 0.65,
2588
+ 0.65,
2589
+ 0.8,
2590
+ 0.65,
2591
+ 0.65,
2592
+ 0.9,
2593
+ 0.65,
2594
+ 0.65,
2595
+ 0.65,
2596
+ 0.65,
2597
+ 0.8,
2598
+ 0.65,
2599
+ 0.65,
2600
+ 0.9,
2601
+ 0.65,
2602
+ 0.65,
2603
+ 0.8,
2604
+ 0.65,
2605
+ 0.65,
2606
+ 0.8,
2607
+ 0.65,
2608
+ 0.65,
2609
+ 0.65,
2610
+ 0.65,
2611
+ 0.8,
2612
+ 0.65,
2613
+ 0.65,
2614
+ 0.65,
2615
+ 0.65,
2616
+ 0.8,
2617
+ 0.65,
2618
+ 0.65,
2619
+ 0.65,
2620
+ 0.65,
2621
+ 0.65,
2622
+ 0.9,
2623
+ 0.8,
2624
+ 0.65,
2625
+ 0.73,
2626
+ 0.65,
2627
+ 0.65,
2628
+ 0.8,
2629
+ 0.65,
2630
+ 0.65,
2631
+ 0.65,
2632
+ 0.65,
2633
+ 0.86,
2634
+ 0.65,
2635
+ 0.9,
2636
+ 0.65,
2637
+ 0.65,
2638
+ 0.65,
2639
+ 0.65,
2640
+ 0.65,
2641
+ 0.65,
2642
+ 0.65,
2643
+ 0.65,
2644
+ 0.65,
2645
+ 0.65,
2646
+ 0.65,
2647
+ 0.65,
2648
+ 0.65,
2649
+ 0.65,
2650
+ 0.65,
2651
+ 0.65,
2652
+ 0.65,
2653
+ 0.65,
2654
+ 0.65,
2655
+ 0.9,
2656
+ 0.65,
2657
+ 0.65,
2658
+ 0.65,
2659
+ 0.65,
2660
+ 0.8,
2661
+ 0.65,
2662
+ 0.65,
2663
+ 0.65,
2664
+ 0.65,
2665
+ 0.65,
2666
+ 0.8,
2667
+ 0.65,
2668
+ 0.8,
2669
+ 0.65,
2670
+ 0.65,
2671
+ 0.65,
2672
+ 0.65,
2673
+ 0.65,
2674
+ 0.8,
2675
+ 0.8,
2676
+ 0.9,
2677
+ 0.65,
2678
+ 0.9,
2679
+ 0.65,
2680
+ 0.65,
2681
+ 0.65,
2682
+ 0.65,
2683
+ 0.86,
2684
+ 0.65,
2685
+ 0.65,
2686
+ 0.65,
2687
+ 0.65,
2688
+ 0.65,
2689
+ 0.65,
2690
+ 0.8,
2691
+ 0.65,
2692
+ 0.65,
2693
+ 0.65,
2694
+ 0.65,
2695
+ 0.65,
2696
+ 0.86,
2697
+ 0.65,
2698
+ 0.8,
2699
+ 0.8,
2700
+ 0.65,
2701
+ 0.8,
2702
+ 0.65,
2703
+ 0.65,
2704
+ 0.8,
2705
+ 0.65,
2706
+ 0.65,
2707
+ 0.69,
2708
+ 0.65,
2709
+ 0.65,
2710
+ 0.65,
2711
+ 0.65,
2712
+ 0.65,
2713
+ 0.88,
2714
+ 0.65,
2715
+ 0.65,
2716
+ 0.65,
2717
+ 0.65,
2718
+ 0.65,
2719
+ 0.65,
2720
+ 0.65,
2721
+ 0.65,
2722
+ 0.8,
2723
+ 0.65,
2724
+ 0.65,
2725
+ 0.65,
2726
+ 0.65,
2727
+ 0.65,
2728
+ 0.65,
2729
+ 0.65,
2730
+ 0.72,
2731
+ 0.65,
2732
+ 0.65,
2733
+ 0.8,
2734
+ 0.65,
2735
+ 0.8,
2736
+ 0.8,
2737
+ 0.65,
2738
+ 0.65,
2739
+ 0.65,
2740
+ 0.65,
2741
+ 0.65,
2742
+ 0.65,
2743
+ 0.9,
2744
+ 0.65,
2745
+ 0.65,
2746
+ 0.65,
2747
+ 0.65,
2748
+ 0.8,
2749
+ 0.65,
2750
+ 0.65,
2751
+ 0.9,
2752
+ 0.9,
2753
+ 0.8,
2754
+ 0.8,
2755
+ 0.65,
2756
+ 0.65,
2757
+ 0.65,
2758
+ 0.65,
2759
+ 0.8,
2760
+ 0.65,
2761
+ 0.65,
2762
+ 0.65,
2763
+ 0.65,
2764
+ 0.8,
2765
+ 0.65,
2766
+ 0.65,
2767
+ 0.65,
2768
+ 0.8,
2769
+ 0.65,
2770
+ 0.65,
2771
+ 0.65,
2772
+ 0.8,
2773
+ 0.65,
2774
+ 0.65,
2775
+ 0.65,
2776
+ 0.65,
2777
+ 0.45,
2778
+ 0.8,
2779
+ 0.65,
2780
+ 0.88,
2781
+ 0.65,
2782
+ 0.65,
2783
+ 0.65,
2784
+ 0.65,
2785
+ 0.65,
2786
+ 0.65,
2787
+ 0.65,
2788
+ 0.65,
2789
+ 0.65,
2790
+ 0.65,
2791
+ 0.8,
2792
+ 0.8,
2793
+ 0.65,
2794
+ 0.65,
2795
+ 0.65,
2796
+ 0.8,
2797
+ 0.65,
2798
+ 0.8,
2799
+ 0.65,
2800
+ 0.8,
2801
+ 0.51,
2802
+ 0.65,
2803
+ 0.65,
2804
+ 0.8,
2805
+ 0.65,
2806
+ 0.65,
2807
+ 0.8,
2808
+ 0.8,
2809
+ 0.65,
2810
+ 0.65,
2811
+ 0.65,
2812
+ 0.65,
2813
+ 0.65,
2814
+ 0.8,
2815
+ 0.65,
2816
+ 0.65,
2817
+ 0.65,
2818
+ 0.65,
2819
+ 0.65,
2820
+ 0.65,
2821
+ 0.65,
2822
+ 0.65,
2823
+ 0.65,
2824
+ 0.65,
2825
+ 0.65,
2826
+ 0.65,
2827
+ 0.65,
2828
+ 0.65,
2829
+ 0.65,
2830
+ 0.66,
2831
+ 0.65,
2832
+ 0.8,
2833
+ 0.9,
2834
+ 0.65,
2835
+ 0.65,
2836
+ 0.65,
2837
+ 0.65,
2838
+ 0.65,
2839
+ 0.65,
2840
+ 0.65,
2841
+ 0.8,
2842
+ 0.8,
2843
+ 0.65,
2844
+ 0.8,
2845
+ 0.65,
2846
+ 0.65,
2847
+ 0.65,
2848
+ 0.65,
2849
+ 0.65,
2850
+ 0.65,
2851
+ 0.65,
2852
+ 0.65,
2853
+ 0.65,
2854
+ 0.65,
2855
+ 0.8,
2856
+ 0.8,
2857
+ 0.65,
2858
+ 0.65,
2859
+ 0.65,
2860
+ 0.65,
2861
+ 0.65,
2862
+ 0.65,
2863
+ 0.65,
2864
+ 0.65,
2865
+ 0.81,
2866
+ 0.65,
2867
+ 0.65,
2868
+ 0.65,
2869
+ 0.65,
2870
+ 0.65,
2871
+ 0.65,
2872
+ 0.65,
2873
+ 0.8,
2874
+ 0.65,
2875
+ 0.65,
2876
+ 0.8,
2877
+ 0.65,
2878
+ 0.75,
2879
+ 0.65,
2880
+ 0.65,
2881
+ 0.65,
2882
+ 0.8,
2883
+ 0.65,
2884
+ 0.65,
2885
+ 0.8,
2886
+ 0.65,
2887
+ 0.66,
2888
+ 0.65,
2889
+ 0.65,
2890
+ 0.65,
2891
+ 0.65,
2892
+ 0.65,
2893
+ 0.65,
2894
+ 0.8,
2895
+ 0.65,
2896
+ 0.65,
2897
+ 0.65,
2898
+ 0.65,
2899
+ 0.65,
2900
+ 0.9,
2901
+ 0.65,
2902
+ 0.65,
2903
+ 0.8,
2904
+ 0.65,
2905
+ 0.65,
2906
+ 0.65,
2907
+ 0.65,
2908
+ 0.65,
2909
+ 0.9,
2910
+ 0.8,
2911
+ 0.65,
2912
+ 0.85,
2913
+ 0.8,
2914
+ 0.65,
2915
+ 0.65,
2916
+ 0.8,
2917
+ 0.65,
2918
+ 0.65,
2919
+ 0.65,
2920
+ 0.65,
2921
+ 0.9,
2922
+ 0.65,
2923
+ 0.65,
2924
+ 0.65,
2925
+ 0.65,
2926
+ 0.65,
2927
+ 0.65,
2928
+ 0.65,
2929
+ 0.65,
2930
+ 0.8,
2931
+ 0.65,
2932
+ 0.65,
2933
+ 0.65,
2934
+ 0.65,
2935
+ 0.65,
2936
+ 0.65,
2937
+ 0.65,
2938
+ 0.65,
2939
+ 0.8,
2940
+ 0.65,
2941
+ 0.65,
2942
+ 0.65,
2943
+ 0.81,
2944
+ 0.65,
2945
+ 0.65,
2946
+ 0.65,
2947
+ 0.65,
2948
+ 0.65,
2949
+ 0.65,
2950
+ 0.89,
2951
+ 0.65,
2952
+ 0.8,
2953
+ 0.65,
2954
+ 0.65,
2955
+ 0.8,
2956
+ 0.65,
2957
+ 0.65,
2958
+ 0.65,
2959
+ 0.79,
2960
+ 0.75,
2961
+ 0.65,
2962
+ 0.65,
2963
+ 0.8,
2964
+ 0.65,
2965
+ 0.67,
2966
+ 0.8,
2967
+ 0.8,
2968
+ 0.86,
2969
+ 0.65,
2970
+ 0.65,
2971
+ 0.65,
2972
+ 0.65,
2973
+ 0.65,
2974
+ 0.65,
2975
+ 0.81,
2976
+ 0.8,
2977
+ 0.65,
2978
+ 0.65,
2979
+ 0.9,
2980
+ 0.65,
2981
+ 0.79,
2982
+ 0.65,
2983
+ 0.8,
2984
+ 0.65,
2985
+ 0.65,
2986
+ 0.65,
2987
+ 0.65,
2988
+ 0.65,
2989
+ 0.65,
2990
+ 0.65,
2991
+ 0.65,
2992
+ 0.65,
2993
+ 0.65,
2994
+ 0.65,
2995
+ 0.65,
2996
+ 0.65,
2997
+ 0.8,
2998
+ 0.65,
2999
+ 0.77,
3000
+ 0.65,
3001
+ 0.65,
3002
+ 0.65,
3003
+ 0.65,
3004
+ 0.65,
3005
+ 0.65,
3006
+ 0.65,
3007
+ 0.65,
3008
+ 0.65,
3009
+ 0.8,
3010
+ 0.8,
3011
+ 0.8,
3012
+ 0.65,
3013
+ 0.74,
3014
+ 0.65,
3015
+ 0.65,
3016
+ 0.65,
3017
+ 0.65,
3018
+ 0.65,
3019
+ 0.65,
3020
+ 0.6,
3021
+ 0.65,
3022
+ 0.65,
3023
+ 0.65,
3024
+ 0.65,
3025
+ 0.65,
3026
+ 0.65,
3027
+ 0.65,
3028
+ 0.65,
3029
+ 0.8,
3030
+ 0.65,
3031
+ 0.65,
3032
+ 0.8,
3033
+ 0.65,
3034
+ 0.65,
3035
+ 0.8,
3036
+ 0.65,
3037
+ 0.65,
3038
+ 0.65,
3039
+ 0.89,
3040
+ 0.8,
3041
+ 0.65,
3042
+ 0.65,
3043
+ 0.88,
3044
+ 0.65,
3045
+ 0.65,
3046
+ 0.65,
3047
+ 0.9,
3048
+ 0.75,
3049
+ 0.65,
3050
+ 0.65,
3051
+ 0.65,
3052
+ 0.8,
3053
+ 0.6,
3054
+ 0.65,
3055
+ 0.65,
3056
+ 0.65,
3057
+ 0.9,
3058
+ 0.65,
3059
+ 0.65,
3060
+ 0.65,
3061
+ 0.84,
3062
+ 0.65,
3063
+ 0.65,
3064
+ 0.8,
3065
+ 0.65,
3066
+ 0.65,
3067
+ 0.8,
3068
+ 0.65,
3069
+ 0.65,
3070
+ 0.65,
3071
+ 0.65,
3072
+ 0.65,
3073
+ 0.65,
3074
+ 0.65,
3075
+ 0.65,
3076
+ 0.65,
3077
+ 0.8,
3078
+ 0.65,
3079
+ 0.65,
3080
+ 0.65,
3081
+ 0.9,
3082
+ 0.65,
3083
+ 0.65,
3084
+ 0.65,
3085
+ 0.65,
3086
+ 0.8,
3087
+ 0.65,
3088
+ 0.8,
3089
+ 0.65,
3090
+ 0.8,
3091
+ 0.8,
3092
+ 0.8,
3093
+ 0.65,
3094
+ 0.8,
3095
+ 0.65,
3096
+ 0.65,
3097
+ 0.65,
3098
+ 0.65,
3099
+ 0.8,
3100
+ 0.65,
3101
+ 0.65,
3102
+ 0.85,
3103
+ 0.65,
3104
+ 0.65,
3105
+ 0.8,
3106
+ 0.65,
3107
+ 0.65,
3108
+ 0.65,
3109
+ 0.65,
3110
+ 0.65,
3111
+ 0.65,
3112
+ 0.65,
3113
+ 0.65,
3114
+ 0.8,
3115
+ 0.8,
3116
+ 0.65,
3117
+ 0.65,
3118
+ 0.65,
3119
+ 0.65,
3120
+ 0.65,
3121
+ 0.63,
3122
+ 0.65,
3123
+ 0.65,
3124
+ 0.65,
3125
+ 0.7,
3126
+ 0.65,
3127
+ 0.65,
3128
+ 0.65,
3129
+ 0.65,
3130
+ 0.65,
3131
+ 0.65,
3132
+ 0.65,
3133
+ 0.65,
3134
+ 0.65,
3135
+ 0.65,
3136
+ 0.65,
3137
+ 0.65,
3138
+ 0.65,
3139
+ 0.8,
3140
+ 0.65,
3141
+ 0.65,
3142
+ 0.8,
3143
+ 0.65,
3144
+ 0.65,
3145
+ 0.65,
3146
+ 0.65,
3147
+ 0.65,
3148
+ 0.65,
3149
+ 0.9,
3150
+ 0.9,
3151
+ 0.65,
3152
+ 0.65,
3153
+ 0.8,
3154
+ 0.65,
3155
+ 0.65,
3156
+ 0.65,
3157
+ 0.65,
3158
+ 0.65,
3159
+ 0.65,
3160
+ 0.84,
3161
+ 0.65,
3162
+ 0.65,
3163
+ 0.8,
3164
+ 0.65,
3165
+ 0.81,
3166
+ 0.8,
3167
+ 0.8,
3168
+ 0.8,
3169
+ 0.82,
3170
+ 0.65,
3171
+ 0.65,
3172
+ 0.65,
3173
+ 0.8,
3174
+ 0.65,
3175
+ 0.65,
3176
+ 0.65,
3177
+ 0.65,
3178
+ 0.65,
3179
+ 0.65,
3180
+ 0.8,
3181
+ 0.65,
3182
+ 0.8,
3183
+ 0.65,
3184
+ 0.8,
3185
+ 0.65,
3186
+ 0.88,
3187
+ 0.65,
3188
+ 0.8,
3189
+ 0.65,
3190
+ 0.7,
3191
+ 0.65,
3192
+ 0.65,
3193
+ 0.65,
3194
+ 0.65,
3195
+ 0.65,
3196
+ 0.65,
3197
+ 0.65,
3198
+ 0.65,
3199
+ 0.8,
3200
+ 0.65,
3201
+ 0.65,
3202
+ 0.65,
3203
+ 0.65,
3204
+ 0.65,
3205
+ 0.8,
3206
+ 0.65,
3207
+ 0.65,
3208
+ 0.65,
3209
+ 0.8,
3210
+ 0.65,
3211
+ 1,
3212
+ 0.8,
3213
+ 0.8,
3214
+ 0.65,
3215
+ 0.65,
3216
+ 0.65,
3217
+ 0.8,
3218
+ 0.8,
3219
+ 0.8,
3220
+ 0.65,
3221
+ 0.74,
3222
+ 0.65,
3223
+ 0.65,
3224
+ 0.65,
3225
+ 0.8,
3226
+ 0.65,
3227
+ 0.8,
3228
+ 0.65,
3229
+ 0.65,
3230
+ 0.65,
3231
+ 0.65,
3232
+ 0.65,
3233
+ 0.65,
3234
+ 0.65,
3235
+ 0.65,
3236
+ 0.65,
3237
+ 0.65,
3238
+ 0.8,
3239
+ 0.8,
3240
+ 0.65,
3241
+ 0.65,
3242
+ 0.65,
3243
+ 0.65,
3244
+ 0.65,
3245
+ 0.65,
3246
+ 0.65,
3247
+ 0.65,
3248
+ 0.8,
3249
+ 0.65,
3250
+ 0.65,
3251
+ 0.65,
3252
+ 0.85,
3253
+ 0.65,
3254
+ 0.65,
3255
+ 0.65,
3256
+ 0.65,
3257
+ 0.8,
3258
+ 0.8,
3259
+ 0.65,
3260
+ 0.65,
3261
+ 0.65,
3262
+ 0.8,
3263
+ 0.65,
3264
+ 0.65,
3265
+ 0.65,
3266
+ 0.65,
3267
+ 0.65,
3268
+ 0.8,
3269
+ 0.65,
3270
+ 0.8,
3271
+ 0.65,
3272
+ 0.65,
3273
+ 0.65,
3274
+ 0.65,
3275
+ 0.65,
3276
+ 0.8,
3277
+ 0.9,
3278
+ 0.86,
3279
+ 0.8,
3280
+ 0.65,
3281
+ 0.8,
3282
+ 0.8,
3283
+ 0.65,
3284
+ 0.65,
3285
+ 0.65,
3286
+ 0.65,
3287
+ 0.65,
3288
+ 0.65,
3289
+ 0.65,
3290
+ 0.65,
3291
+ 0.64,
3292
+ 0.65,
3293
+ 0.65,
3294
+ 0.8,
3295
+ 0.8,
3296
+ 0.65,
3297
+ 0.87,
3298
+ 0.65,
3299
+ 0.65,
3300
+ 0.8,
3301
+ 0.8,
3302
+ 0.65,
3303
+ 0.65,
3304
+ 0.65,
3305
+ 0.65,
3306
+ 0.65,
3307
+ 0.65,
3308
+ 0.65,
3309
+ 0.65,
3310
+ 0.87,
3311
+ 0.65,
3312
+ 0.65,
3313
+ 0.65,
3314
+ 0.65,
3315
+ 0.65,
3316
+ 0.65,
3317
+ 0.8,
3318
+ 0.65,
3319
+ 0.65,
3320
+ 0.8,
3321
+ 0.65,
3322
+ 0.65,
3323
+ 0.65,
3324
+ 0.7,
3325
+ 0.65,
3326
+ 0.65,
3327
+ 0.8,
3328
+ 0.65,
3329
+ 0.65,
3330
+ 0.75,
3331
+ 0.65,
3332
+ 0.65,
3333
+ 0.65,
3334
+ 0.65,
3335
+ 0.65,
3336
+ 0.65,
3337
+ 0.85,
3338
+ 0.8,
3339
+ 0.65,
3340
+ 0.65,
3341
+ 0.65,
3342
+ 0.65,
3343
+ 0.65,
3344
+ 0.65,
3345
+ 0.65,
3346
+ 0.65,
3347
+ 0.8,
3348
+ 0.8,
3349
+ 0.65,
3350
+ 0.65,
3351
+ 0.65,
3352
+ 0.65,
3353
+ 0.65,
3354
+ 0.65,
3355
+ 0.65,
3356
+ 0.65,
3357
+ 0.8,
3358
+ 0.65,
3359
+ 0.65,
3360
+ 0.65,
3361
+ 0.71,
3362
+ 0.65,
3363
+ 0.65,
3364
+ 0.65,
3365
+ 0.65,
3366
+ 0.65,
3367
+ 0.65,
3368
+ 0.65,
3369
+ 0.65,
3370
+ 0.65,
3371
+ 0.65,
3372
+ 0.65,
3373
+ 0.65,
3374
+ 0.8,
3375
+ 0.65,
3376
+ 0.65,
3377
+ 0.65,
3378
+ 0.73,
3379
+ 0.65,
3380
+ 0.65,
3381
+ 0.8,
3382
+ 0.65,
3383
+ 0.65,
3384
+ 0.65,
3385
+ 0.65,
3386
+ 0.8,
3387
+ 0.8,
3388
+ 0.65,
3389
+ 0.65,
3390
+ 0.8,
3391
+ 0.65,
3392
+ 0.65,
3393
+ 0.65,
3394
+ 0.65,
3395
+ 0.9,
3396
+ 0.65,
3397
+ 0.65,
3398
+ 0.8,
3399
+ 0.65,
3400
+ 0.86,
3401
+ 0.65,
3402
+ 0.65,
3403
+ 0.65,
3404
+ 0.65,
3405
+ 0.9,
3406
+ 0.65,
3407
+ 0.65,
3408
+ 0.65,
3409
+ 0.65,
3410
+ 0.65,
3411
+ 0.65,
3412
+ 0.8,
3413
+ 0.75,
3414
+ 0.65,
3415
+ 0.8,
3416
+ 0.65,
3417
+ 0.65,
3418
+ 0.65,
3419
+ 0.65,
3420
+ 0.65,
3421
+ 0.65,
3422
+ 0.65,
3423
+ 0.65,
3424
+ 0.65,
3425
+ 0.8,
3426
+ 0.65,
3427
+ 0.65,
3428
+ 0.65,
3429
+ 0.65,
3430
+ 0.65,
3431
+ 0.65,
3432
+ 0.65,
3433
+ 0.65,
3434
+ 0.65,
3435
+ 0.65,
3436
+ 0.65,
3437
+ 0.8,
3438
+ 0.88,
3439
+ 0.65,
3440
+ 0.8,
3441
+ 0.65,
3442
+ 0.8,
3443
+ 0.65,
3444
+ 0.65,
3445
+ 0.65,
3446
+ 0.9,
3447
+ 0.65,
3448
+ 0.65,
3449
+ 0.65,
3450
+ 0.65,
3451
+ 0.65,
3452
+ 0.8,
3453
+ 0.65,
3454
+ 0.8,
3455
+ 0.65,
3456
+ 0.65,
3457
+ 0.65,
3458
+ 0.65,
3459
+ 0.65,
3460
+ 0.81,
3461
+ 0.65,
3462
+ 0.65,
3463
+ 0.8,
3464
+ 0.65,
3465
+ 0.65,
3466
+ 0.9,
3467
+ 0.8,
3468
+ 0.65,
3469
+ 0.65,
3470
+ 0.65,
3471
+ 0.8,
3472
+ 0.65,
3473
+ 0.65,
3474
+ 0.65,
3475
+ 0.65,
3476
+ 0.65,
3477
+ 0.65,
3478
+ 0.65,
3479
+ 0.65,
3480
+ 0.8,
3481
+ 0.9,
3482
+ 0.65,
3483
+ 0.65,
3484
+ 0.65,
3485
+ 0.65,
3486
+ 0.7,
3487
+ 0.65,
3488
+ 0.65,
3489
+ 0.65,
3490
+ 0.8,
3491
+ 0.65,
3492
+ 0.65,
3493
+ 0.65,
3494
+ 0.65,
3495
+ 0.65,
3496
+ 0.65,
3497
+ 0.65,
3498
+ 0.65,
3499
+ 0.65,
3500
+ 0.65,
3501
+ 0.65,
3502
+ 0.77,
3503
+ 0.65,
3504
+ 0.65,
3505
+ 0.65,
3506
+ 0.65,
3507
+ 0.65,
3508
+ 0.85,
3509
+ 0.65,
3510
+ 0.65,
3511
+ 0.65,
3512
+ 0.65,
3513
+ 0.65,
3514
+ 0.65,
3515
+ 0.65,
3516
+ 0.65,
3517
+ 0.65,
3518
+ 0.65,
3519
+ 0.8,
3520
+ 0.65,
3521
+ 0.65,
3522
+ 0.87,
3523
+ 0.65,
3524
+ 0.65,
3525
+ 0.65,
3526
+ 0.65,
3527
+ 0.65,
3528
+ 0.65,
3529
+ 0.65,
3530
+ 0.65,
3531
+ 0.65,
3532
+ 0.65,
3533
+ 0.65,
3534
+ 0.8,
3535
+ 0.8,
3536
+ 0.65,
3537
+ 0.65,
3538
+ 0.8,
3539
+ 0.65,
3540
+ 0.65,
3541
+ 0.65,
3542
+ 0.65,
3543
+ 0.65,
3544
+ 0.65,
3545
+ 0.65,
3546
+ 0.65,
3547
+ 0.9,
3548
+ 0.65,
3549
+ 0.65,
3550
+ 0.65,
3551
+ 0.65,
3552
+ 0.8,
3553
+ 0.65,
3554
+ 0.65,
3555
+ 0.65,
3556
+ 0.65,
3557
+ 0.65,
3558
+ 0.65,
3559
+ 0.65,
3560
+ 0.8,
3561
+ 0.65,
3562
+ 0.8,
3563
+ 0.65,
3564
+ 0.65,
3565
+ 0.65,
3566
+ 0.65,
3567
+ 0.65,
3568
+ 0.65,
3569
+ 0.8,
3570
+ 0.65,
3571
+ 0.65,
3572
+ 0.65,
3573
+ 0.65,
3574
+ 0.65,
3575
+ 0.65,
3576
+ 0.65,
3577
+ 0.65,
3578
+ 0.57,
3579
+ 0.65,
3580
+ 0.65,
3581
+ 0.8,
3582
+ 0.65,
3583
+ 0.65,
3584
+ 0.8,
3585
+ 0.8,
3586
+ 0.65,
3587
+ 0.65,
3588
+ 0.65,
3589
+ 0.65,
3590
+ 0.76,
3591
+ 1,
3592
+ 0.8,
3593
+ 0.65,
3594
+ 0.65,
3595
+ 0.58,
3596
+ 0.8,
3597
+ 0.65,
3598
+ 0.65,
3599
+ 0.65,
3600
+ 0.65,
3601
+ 0.65,
3602
+ 0.8,
3603
+ 1,
3604
+ 0.65,
3605
+ 0.8,
3606
+ 0.65,
3607
+ 0.65,
3608
+ 0.65,
3609
+ 0.8,
3610
+ 0.65,
3611
+ 0.9,
3612
+ 0.65,
3613
+ 0.65,
3614
+ 0.65,
3615
+ 0.65,
3616
+ 0.65,
3617
+ 0.65,
3618
+ 0.65,
3619
+ 0.87,
3620
+ 0.8,
3621
+ 0.9,
3622
+ 0.8,
3623
+ 0.8,
3624
+ 0.65,
3625
+ 0.65,
3626
+ 0.65,
3627
+ 0.65,
3628
+ 0.65,
3629
+ 0.65,
3630
+ 0.8,
3631
+ 0.65,
3632
+ 0.65,
3633
+ 0.65,
3634
+ 0.65,
3635
+ 0.8,
3636
+ 0.65,
3637
+ 0.65,
3638
+ 0.8,
3639
+ 0.65,
3640
+ 0.65,
3641
+ 0.65,
3642
+ 0.8,
3643
+ 0.65,
3644
+ 0.65,
3645
+ 0.65,
3646
+ 0.65,
3647
+ 0.65,
3648
+ 0.65,
3649
+ 0.65,
3650
+ 0.65,
3651
+ 0.65,
3652
+ 0.65,
3653
+ 0.8,
3654
+ 0.65,
3655
+ 0.8,
3656
+ 0.65,
3657
+ 0.65,
3658
+ 0.65,
3659
+ 0.65,
3660
+ 0.8,
3661
+ 0.65,
3662
+ 0.65,
3663
+ 0.65,
3664
+ 0.8,
3665
+ 0.65,
3666
+ 0.65,
3667
+ 0.65,
3668
+ 0.65,
3669
+ 0.65,
3670
+ 0.65,
3671
+ 0.87,
3672
+ 0.68,
3673
+ 0.8,
3674
+ 0.65,
3675
+ 0.65,
3676
+ 0.65,
3677
+ 0.65,
3678
+ 0.8,
3679
+ 0.65,
3680
+ 0.65,
3681
+ 0.65,
3682
+ 0.65,
3683
+ 0.65,
3684
+ 0.8,
3685
+ 0.65,
3686
+ 0.65,
3687
+ 0.65,
3688
+ 0.65,
3689
+ 0.65,
3690
+ 0.65,
3691
+ 0.8,
3692
+ 0.65,
3693
+ 0.65,
3694
+ 0.65,
3695
+ 0.99,
3696
+ 0.8,
3697
+ 0.77,
3698
+ 0.65,
3699
+ 0.9,
3700
+ 0.65,
3701
+ 0.65,
3702
+ 0.88,
3703
+ 0.65,
3704
+ 0.65,
3705
+ 0.65,
3706
+ 0.65,
3707
+ 0.9,
3708
+ 0.65,
3709
+ 0.88,
3710
+ 0.65,
3711
+ 0.65,
3712
+ 0.65,
3713
+ 0.65,
3714
+ 0.65,
3715
+ 0.65,
3716
+ 0.89,
3717
+ 0.65,
3718
+ 0.65,
3719
+ 0.8,
3720
+ 0.8,
3721
+ 0.65,
3722
+ 0.7,
3723
+ 0.65,
3724
+ 0.65,
3725
+ 0.8,
3726
+ 0.9,
3727
+ 0.65,
3728
+ 0.65,
3729
+ 0.65,
3730
+ 0.8,
3731
+ 0.65,
3732
+ 0.65,
3733
+ 0.8,
3734
+ 0.8,
3735
+ 0.65,
3736
+ 0.65,
3737
+ 0.65,
3738
+ 0.8,
3739
+ 0.65,
3740
+ 0.65,
3741
+ 0.65,
3742
+ 0.65,
3743
+ 0.65,
3744
+ 0.65,
3745
+ 0.65,
3746
+ 0.8,
3747
+ 0.8,
3748
+ 0.8,
3749
+ 0.65,
3750
+ 0.77,
3751
+ 0.65,
3752
+ 0.65,
3753
+ 0.65,
3754
+ 0.65,
3755
+ 0.79,
3756
+ 0.65,
3757
+ 0.65,
3758
+ 0.65,
3759
+ 0.65,
3760
+ 0.65,
3761
+ 0.8,
3762
+ 0.65,
3763
+ 0.65,
3764
+ 0.65,
3765
+ 0.65,
3766
+ 0.8,
3767
+ 0.65,
3768
+ 0.65,
3769
+ 0.65,
3770
+ 0.65,
3771
+ 0.65,
3772
+ 0.65,
3773
+ 0.65,
3774
+ 0.65,
3775
+ 0.65,
3776
+ 0.65,
3777
+ 0.65,
3778
+ 0.8,
3779
+ 0.65,
3780
+ 0.65,
3781
+ 0.65,
3782
+ 0.8,
3783
+ 0.65,
3784
+ 0.8,
3785
+ 0.65,
3786
+ 0.65,
3787
+ 0.65,
3788
+ 0.65,
3789
+ 0.65,
3790
+ 0.8,
3791
+ 0.8,
3792
+ 0.65,
3793
+ 0.65,
3794
+ 0.65,
3795
+ 0.85,
3796
+ 0.65,
3797
+ 0.65,
3798
+ 0.65,
3799
+ 0.65,
3800
+ 0.65,
3801
+ 0.65,
3802
+ 0.52,
3803
+ 0.65,
3804
+ 0.65,
3805
+ 0.8,
3806
+ 0.65,
3807
+ 0.65,
3808
+ 0.65,
3809
+ 0.65,
3810
+ 0.65,
3811
+ 0.65,
3812
+ 0.8,
3813
+ 0.65,
3814
+ 0.65,
3815
+ 0.65,
3816
+ 0.65,
3817
+ 0.65,
3818
+ 0.65,
3819
+ 0.65,
3820
+ 0.8,
3821
+ 0.65,
3822
+ 0.86,
3823
+ 0.65,
3824
+ 0.65,
3825
+ 0.8,
3826
+ 0.56,
3827
+ 0.65,
3828
+ 0.65,
3829
+ 0.65,
3830
+ 0.8,
3831
+ 0.65,
3832
+ 0.8,
3833
+ 0.8,
3834
+ 0.65,
3835
+ 0.65,
3836
+ 0.65,
3837
+ 0.65,
3838
+ 0.65,
3839
+ 0.65,
3840
+ 0.65,
3841
+ 0.8,
3842
+ 0.65,
3843
+ 0.65,
3844
+ 0.65,
3845
+ 0.65,
3846
+ 0.72,
3847
+ 0.65,
3848
+ 0.65,
3849
+ 0.65,
3850
+ 0.8,
3851
+ 0.8,
3852
+ 0.65,
3853
+ 0.9,
3854
+ 0.65,
3855
+ 0.65,
3856
+ 0.8,
3857
+ 0.65,
3858
+ 0.8,
3859
+ 0.6,
3860
+ 0.65,
3861
+ 0.65,
3862
+ 0.65,
3863
+ 0.8,
3864
+ 0.65,
3865
+ 0.65,
3866
+ 0.65,
3867
+ 0.8,
3868
+ 0.65,
3869
+ 0.88,
3870
+ 0.65,
3871
+ 0.65,
3872
+ 0.65,
3873
+ 0.65,
3874
+ 0.8,
3875
+ 0.65,
3876
+ 0.65,
3877
+ 0.89,
3878
+ 0.85,
3879
+ 0.65,
3880
+ 0.65,
3881
+ 0.65,
3882
+ 0.65,
3883
+ 0.65,
3884
+ 0.65,
3885
+ 0.65,
3886
+ 0.87,
3887
+ 0.65,
3888
+ 0.65,
3889
+ 0.65,
3890
+ 0.65,
3891
+ 0.65,
3892
+ 0.65,
3893
+ 0.8,
3894
+ 0.65,
3895
+ 0.8,
3896
+ 0.65,
3897
+ 0.65,
3898
+ 0.65,
3899
+ 0.65,
3900
+ 0.65,
3901
+ 0.65,
3902
+ 0.65,
3903
+ 0.65,
3904
+ 0.65,
3905
+ 0.75,
3906
+ 0.65,
3907
+ 0.65,
3908
+ 0.65,
3909
+ 0.65,
3910
+ 0.54,
3911
+ 1,
3912
+ 0.65,
3913
+ 0.65,
3914
+ 0.75,
3915
+ 0.65,
3916
+ 0.75,
3917
+ 0.65,
3918
+ 0.65,
3919
+ 0.65,
3920
+ 0.8,
3921
+ 0.65,
3922
+ 0.65,
3923
+ 0.8,
3924
+ 0.65,
3925
+ 0.65,
3926
+ 0.8,
3927
+ 0.65,
3928
+ 0.65,
3929
+ 0.65,
3930
+ 0.65,
3931
+ 0.65,
3932
+ 0.65,
3933
+ 0.65,
3934
+ 0.9,
3935
+ 0.9,
3936
+ 0.62,
3937
+ 0.65,
3938
+ 0.65,
3939
+ 0.65,
3940
+ 0.65,
3941
+ 0.86,
3942
+ 0.65,
3943
+ 0.65,
3944
+ 0.65,
3945
+ 0.65,
3946
+ 0.65,
3947
+ 0.65,
3948
+ 0.65,
3949
+ 0.65,
3950
+ 0.65,
3951
+ 0.65,
3952
+ 0.65,
3953
+ 0.65,
3954
+ 0.8,
3955
+ 0.65,
3956
+ 0.8,
3957
+ 0.8,
3958
+ 0.65,
3959
+ 0.8,
3960
+ 0.65,
3961
+ 0.65,
3962
+ 0.65,
3963
+ 0.65,
3964
+ 0.65,
3965
+ 0.65,
3966
+ 0.65,
3967
+ 0.8,
3968
+ 0.65,
3969
+ 0.82,
3970
+ 0.65,
3971
+ 0.65,
3972
+ 0.65,
3973
+ 0.65,
3974
+ 0.65,
3975
+ 0.65,
3976
+ 0.65,
3977
+ 0.65,
3978
+ 0.8,
3979
+ 0.65,
3980
+ 0.65,
3981
+ 0.65,
3982
+ 0.9,
3983
+ 0.74,
3984
+ 0.8,
3985
+ 0.65,
3986
+ 0.8,
3987
+ 0.8,
3988
+ 0.7,
3989
+ 0.65,
3990
+ 0.65,
3991
+ 0.65,
3992
+ 0.89,
3993
+ 0.65,
3994
+ 0.65,
3995
+ 0.8,
3996
+ 0.8,
3997
+ 0.8,
3998
+ 0.8,
3999
+ 0.65,
4000
+ 0.8,
4001
+ 0.65,
4002
+ 0.65,
4003
+ 0.65,
4004
+ 0.9,
4005
+ 0.65,
4006
+ 0.65,
4007
+ 0.65,
4008
+ 0.8,
4009
+ 0.8,
4010
+ 0.84,
4011
+ 0.8,
4012
+ 0.65,
4013
+ 0.65,
4014
+ 0.8,
4015
+ 0.75,
4016
+ 0.65,
4017
+ 0.65,
4018
+ 0.65,
4019
+ 0.89,
4020
+ 0.65,
4021
+ 0.65,
4022
+ 0.65,
4023
+ 0.65,
4024
+ 0.82,
4025
+ 0.65,
4026
+ 0.65,
4027
+ 0.65,
4028
+ 0.8,
4029
+ 0.65,
4030
+ 0.8,
4031
+ 0.65,
4032
+ 0.8,
4033
+ 0.65,
4034
+ 0.65,
4035
+ 0.65,
4036
+ 0.84,
4037
+ 0.65,
4038
+ 0.65,
4039
+ 0.65,
4040
+ 0.65,
4041
+ 0.65,
4042
+ 0.65,
4043
+ 0.65,
4044
+ 0.65,
4045
+ 0.8,
4046
+ 0.65,
4047
+ 0.65,
4048
+ 0.65,
4049
+ 0.65,
4050
+ 0.8,
4051
+ 0.8,
4052
+ 0.8,
4053
+ 0.65,
4054
+ 0.65,
4055
+ 0.65,
4056
+ 0.65,
4057
+ 0.65,
4058
+ 0.65,
4059
+ 0.65,
4060
+ 0.65,
4061
+ 0.65,
4062
+ 0.65,
4063
+ 0.65,
4064
+ 0.65,
4065
+ 0.65,
4066
+ 0.65,
4067
+ 0.8,
4068
+ 0.65,
4069
+ 0.8,
4070
+ 0.65,
4071
+ 0.8,
4072
+ 0.65,
4073
+ 0.7,
4074
+ 0.65,
4075
+ 0.65,
4076
+ 0.65,
4077
+ 0.65,
4078
+ 0.65,
4079
+ 0.65,
4080
+ 0.65,
4081
+ 0.65,
4082
+ 0.9,
4083
+ 0.65,
4084
+ 0.65,
4085
+ 0.8,
4086
+ 0.65,
4087
+ 0.65,
4088
+ 0.65,
4089
+ 0.65,
4090
+ 0.65,
4091
+ 0.65,
4092
+ 0.8,
4093
+ 0.65,
4094
+ 0.65,
4095
+ 0.65,
4096
+ 0.65,
4097
+ 0.65,
4098
+ 0.65,
4099
+ 0.8,
4100
+ 0.74,
4101
+ 0.65,
4102
+ 0.8,
4103
+ 0.65,
4104
+ 0.65,
4105
+ 0.65,
4106
+ 0.9,
4107
+ 0.65,
4108
+ 0.65,
4109
+ 0.65,
4110
+ 0.65,
4111
+ 0.85,
4112
+ 0.65,
4113
+ 0.9,
4114
+ 0.9,
4115
+ 0.65,
4116
+ 0.65,
4117
+ 0.65,
4118
+ 0.63,
4119
+ 0.82,
4120
+ 0.65,
4121
+ 0.65,
4122
+ 0.8,
4123
+ 0.65,
4124
+ 0.65,
4125
+ 0.65,
4126
+ 0.65,
4127
+ 0.65,
4128
+ 0.65,
4129
+ 0.8,
4130
+ 0.65,
4131
+ 0.65,
4132
+ 0.8,
4133
+ 0.65,
4134
+ 0.65,
4135
+ 0.8,
4136
+ 0.65,
4137
+ 0.65,
4138
+ 0.65,
4139
+ 0.65,
4140
+ 0.65,
4141
+ 0.65,
4142
+ 0.65,
4143
+ 0.65,
4144
+ 0.8,
4145
+ 0.65,
4146
+ 0.65,
4147
+ 0.65,
4148
+ 0.65,
4149
+ 0.8,
4150
+ 0.7,
4151
+ 0.65,
4152
+ 0.65,
4153
+ 0.65,
4154
+ 0.65,
4155
+ 0.65,
4156
+ 0.9,
4157
+ 0.65,
4158
+ 0.65,
4159
+ 0.74,
4160
+ 0.9,
4161
+ 0.65,
4162
+ 0.8,
4163
+ 0.65,
4164
+ 0.65,
4165
+ 0.58,
4166
+ 0.65,
4167
+ 0.65,
4168
+ 0.65,
4169
+ 0.65,
4170
+ 0.65,
4171
+ 0.65,
4172
+ 0.89,
4173
+ 0.75,
4174
+ 0.65,
4175
+ 0.65,
4176
+ 0.8,
4177
+ 0.65,
4178
+ 0.65,
4179
+ 0.88,
4180
+ 0.65,
4181
+ 0.65,
4182
+ 0.65,
4183
+ 0.8,
4184
+ 0.65,
4185
+ 0.65,
4186
+ 0.65,
4187
+ 0.65,
4188
+ 0.65,
4189
+ 0.65,
4190
+ 0.65,
4191
+ 0.89,
4192
+ 0.65,
4193
+ 0.65,
4194
+ 0.65,
4195
+ 0.65,
4196
+ 0.65,
4197
+ 0.65,
4198
+ 0.65,
4199
+ 0.65,
4200
+ 0.65,
4201
+ 0.65,
4202
+ 0.65,
4203
+ 0.65,
4204
+ 0.8,
4205
+ 0.8,
4206
+ 0.8,
4207
+ 0.65,
4208
+ 0.65,
4209
+ 0.8,
4210
+ 0.8,
4211
+ 0.65,
4212
+ 0.65,
4213
+ 0.87,
4214
+ 0.65,
4215
+ 0.65,
4216
+ 0.65,
4217
+ 0.8,
4218
+ 0.65,
4219
+ 0.64,
4220
+ 0.65,
4221
+ 0.65,
4222
+ 0.65,
4223
+ 0.8,
4224
+ 0.87,
4225
+ 0.65,
4226
+ 0.65,
4227
+ 0.8,
4228
+ 0.9,
4229
+ 0.65,
4230
+ 0.65,
4231
+ 0.65,
4232
+ 0.65,
4233
+ 0.8,
4234
+ 0.8,
4235
+ 0.65,
4236
+ 0.89,
4237
+ 0.65,
4238
+ 0.65,
4239
+ 0.65,
4240
+ 0.65,
4241
+ 0.65,
4242
+ 0.65,
4243
+ 0.8,
4244
+ 0.65,
4245
+ 0.65,
4246
+ 0.65,
4247
+ 0.83,
4248
+ 0.65,
4249
+ 0.65,
4250
+ 0.8,
4251
+ 0.65,
4252
+ 0.9,
4253
+ 0.65,
4254
+ 0.8,
4255
+ 0.8,
4256
+ 0.65,
4257
+ 0.65,
4258
+ 0.65,
4259
+ 0.65,
4260
+ 0.65,
4261
+ 0.65,
4262
+ 0.8,
4263
+ 0.65,
4264
+ 0.65,
4265
+ 0.65,
4266
+ 0.65,
4267
+ 0.65,
4268
+ 0.65,
4269
+ 0.65,
4270
+ 0.65,
4271
+ 0.65,
4272
+ 0.65,
4273
+ 0.78,
4274
+ 0.65,
4275
+ 0.8,
4276
+ 0.65,
4277
+ 0.9,
4278
+ 0.65,
4279
+ 0.8,
4280
+ 0.65,
4281
+ 0.65,
4282
+ 0.65,
4283
+ 0.65,
4284
+ 0.65,
4285
+ 0.9,
4286
+ 0.65,
4287
+ 0.88,
4288
+ 0.8,
4289
+ 0.65,
4290
+ 0.65,
4291
+ 0.65,
4292
+ 0.81,
4293
+ 0.65,
4294
+ 0.65,
4295
+ 0.65,
4296
+ 0.65,
4297
+ 0.65,
4298
+ 0.65,
4299
+ 0.65,
4300
+ 0.65,
4301
+ 0.65,
4302
+ 0.65,
4303
+ 0.65,
4304
+ 0.65,
4305
+ 0.65,
4306
+ 0.65,
4307
+ 0.8,
4308
+ 0.65,
4309
+ 0.65,
4310
+ 0.65,
4311
+ 0.65,
4312
+ 0.77,
4313
+ 0.65,
4314
+ 0.65,
4315
+ 0.65,
4316
+ 0.8,
4317
+ 0.8,
4318
+ 0.8,
4319
+ 0.8,
4320
+ 0.65,
4321
+ 0.65,
4322
+ 0.65,
4323
+ 1,
4324
+ 0.65,
4325
+ 0.65,
4326
+ 0.65,
4327
+ 0.8,
4328
+ 0.65,
4329
+ 0.65,
4330
+ 0.8,
4331
+ 0.65,
4332
+ 0.65,
4333
+ 0.8,
4334
+ 0.85,
4335
+ 0.65,
4336
+ 0.65,
4337
+ 0.8,
4338
+ 0.8,
4339
+ 0.65,
4340
+ 0.65,
4341
+ 0.65,
4342
+ 0.8,
4343
+ 0.65,
4344
+ 0.65,
4345
+ 0.65,
4346
+ 0.88,
4347
+ 0.65,
4348
+ 0.65,
4349
+ 0.65,
4350
+ 0.65,
4351
+ 0.8,
4352
+ 0.65,
4353
+ 0.65,
4354
+ 0.65,
4355
+ 0.65,
4356
+ 0.8,
4357
+ 0.65,
4358
+ 0.8,
4359
+ 0.65,
4360
+ 0.65,
4361
+ 0.65,
4362
+ 0.8,
4363
+ 0.8,
4364
+ 0.8,
4365
+ 0.65,
4366
+ 0.65,
4367
+ 0.65,
4368
+ 0.65,
4369
+ 0.68,
4370
+ 0.65,
4371
+ 0.65,
4372
+ 0.65,
4373
+ 0.65,
4374
+ 0.65,
4375
+ 0.65,
4376
+ 0.89,
4377
+ 0.65,
4378
+ 0.65,
4379
+ 0.65,
4380
+ 0.65,
4381
+ 0.65,
4382
+ 0.65,
4383
+ 0.65,
4384
+ 0.65,
4385
+ 0.65,
4386
+ 0.65,
4387
+ 0.65,
4388
+ 0.65,
4389
+ 0.65,
4390
+ 0.8,
4391
+ 0.65,
4392
+ 0.65,
4393
+ 0.65,
4394
+ 0.8,
4395
+ 0.9,
4396
+ 0.65,
4397
+ 0.8,
4398
+ 0.65,
4399
+ 0.8,
4400
+ 0.65,
4401
+ 0.65,
4402
+ 0.65,
4403
+ 0.65,
4404
+ 0.65,
4405
+ 0.65,
4406
+ 0.65,
4407
+ 0.81,
4408
+ 0.65,
4409
+ 0.65,
4410
+ 0.65,
4411
+ 0.8,
4412
+ 0.85,
4413
+ 0.65,
4414
+ 0.77,
4415
+ 0.65,
4416
+ 0.8,
4417
+ 0.65,
4418
+ 0.65,
4419
+ 0.65,
4420
+ 0.65,
4421
+ 0.65,
4422
+ 0.65,
4423
+ 0.65,
4424
+ 0.65,
4425
+ 0.65,
4426
+ 0.65,
4427
+ 0.65,
4428
+ 0.8,
4429
+ 0.8,
4430
+ 0.8,
4431
+ 0.9,
4432
+ 0.65,
4433
+ 0.65,
4434
+ 0.89,
4435
+ 0.65,
4436
+ 0.65,
4437
+ 0.8,
4438
+ 0.65,
4439
+ 0.65,
4440
+ 0.8,
4441
+ 0.8,
4442
+ 0.65,
4443
+ 0.65,
4444
+ 0.65,
4445
+ 0.88,
4446
+ 0.8,
4447
+ 0.65,
4448
+ 0.8,
4449
+ 0.65,
4450
+ 0.65,
4451
+ 0.65,
4452
+ 0.65,
4453
+ 0.65,
4454
+ 0.65,
4455
+ 0.8,
4456
+ 0.65,
4457
+ 0.65,
4458
+ 0.8,
4459
+ 0.65,
4460
+ 0.65,
4461
+ 0.65,
4462
+ 0.65,
4463
+ 0.65,
4464
+ 0.8,
4465
+ 0.65,
4466
+ 0.65,
4467
+ 0.65,
4468
+ 0.65,
4469
+ 0.65,
4470
+ 0.65,
4471
+ 0.82,
4472
+ 0.65,
4473
+ 0.8,
4474
+ 0.74,
4475
+ 0.65,
4476
+ 0.65,
4477
+ 0.65,
4478
+ 0.65,
4479
+ 0.65,
4480
+ 0.65,
4481
+ 0.85,
4482
+ 0.65,
4483
+ 0.65,
4484
+ 0.85,
4485
+ 0.65,
4486
+ 0.65,
4487
+ 0.65,
4488
+ 0.65,
4489
+ 0.7,
4490
+ 0.7,
4491
+ 0.8,
4492
+ 0.65,
4493
+ 0.65,
4494
+ 0.65,
4495
+ 0.65,
4496
+ 0.87,
4497
+ 0.8,
4498
+ 0.65,
4499
+ 0.65,
4500
+ 0.65,
4501
+ 0.89,
4502
+ 0.85,
4503
+ 0.65,
4504
+ 0.65,
4505
+ 0.65,
4506
+ 0.8,
4507
+ 0.65,
4508
+ 0.65,
4509
+ 0.65,
4510
+ 0.65,
4511
+ 0.65,
4512
+ 0.65,
4513
+ 0.65,
4514
+ 0.65,
4515
+ 0.65,
4516
+ 0.65,
4517
+ 0.65,
4518
+ 0.65,
4519
+ 0.65,
4520
+ 0.8,
4521
+ 0.7,
4522
+ 0.65,
4523
+ 0.65,
4524
+ 0.65,
4525
+ 0.65,
4526
+ 0.65,
4527
+ 0.8,
4528
+ 0.65,
4529
+ 0.65,
4530
+ 0.65,
4531
+ 0.65,
4532
+ 0.9,
4533
+ 0.8,
4534
+ 0.8,
4535
+ 0.65,
4536
+ 0.66,
4537
+ 0.57,
4538
+ 0.65,
4539
+ 0.65,
4540
+ 0.65,
4541
+ 0.49,
4542
+ 0.65,
4543
+ 0.65,
4544
+ 0.8,
4545
+ 0.65,
4546
+ 0.65,
4547
+ 0.8,
4548
+ 0.65,
4549
+ 0.65,
4550
+ 0.8,
4551
+ 0.65,
4552
+ 0.65,
4553
+ 0.65,
4554
+ 0.8,
4555
+ 0.65,
4556
+ 0.65,
4557
+ 0.65,
4558
+ 0.65,
4559
+ 0.65,
4560
+ 0.65,
4561
+ 0.8,
4562
+ 0.65,
4563
+ 0.65,
4564
+ 0.65,
4565
+ 0.65,
4566
+ 0.8,
4567
+ 0.65,
4568
+ 0.8,
4569
+ 0.8,
4570
+ 0.86,
4571
+ 0.65,
4572
+ 0.65,
4573
+ 0.65,
4574
+ 0.65,
4575
+ 0.65,
4576
+ 0.65,
4577
+ 0.65,
4578
+ 0.89,
4579
+ 0.65,
4580
+ 0.65,
4581
+ 0.65,
4582
+ 0.65,
4583
+ 0.65,
4584
+ 0.65,
4585
+ 0.76]
data/tag_list.txt ADDED
@@ -0,0 +1,3429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tennis
2
+ bear cub
3
+ observatory
4
+ bicycle
5
+ hillside
6
+ judge
7
+ watercolor illustration
8
+ granite
9
+ lobster
10
+ livery
11
+ stone
12
+ ceramic
13
+ ranch
14
+ cloth
15
+ smile
16
+ building
17
+ tattoo
18
+ cricketer
19
+ cheek
20
+ pear
21
+ source
22
+ winter
23
+ surface
24
+ spray
25
+ ceremony
26
+ magic
27
+ curve
28
+ container
29
+ fair
30
+ medicine
31
+ baby
32
+ tennis racquet
33
+ ornament
34
+ bamboo
35
+ duckling
36
+ song
37
+ safari
38
+ team presentation
39
+ daffodil
40
+ cross
41
+ toothpaste
42
+ shield
43
+ fashion model
44
+ capsule
45
+ map
46
+ creek
47
+ glass house
48
+ glass plate
49
+ siding
50
+ corner
51
+ water buffalo
52
+ bison
53
+ figure skater
54
+ diploma
55
+ tire
56
+ race
57
+ cable car
58
+ brain
59
+ gas stove
60
+ soap bubble
61
+ palette
62
+ snowboard
63
+ school child
64
+ trench coat
65
+ monk
66
+ fiber
67
+ kitchen window
68
+ sunglass
69
+ coffee
70
+ security
71
+ strawberry
72
+ penguin
73
+ tree root
74
+ loaf
75
+ engagement ring
76
+ lamb
77
+ vector cartoon illustration
78
+ sandwich
79
+ mountain village
80
+ shape
81
+ charm
82
+ fiction
83
+ knot
84
+ greenhouse
85
+ sushi
86
+ text
87
+ disaster
88
+ trophy
89
+ gang
90
+ strap
91
+ soccer game
92
+ cardinal
93
+ tee
94
+ turtle
95
+ water surface
96
+ grassland
97
+ dolphin
98
+ store
99
+ dirt
100
+ iceberg
101
+ pergola
102
+ farmer market
103
+ publicity portrait
104
+ tote bag
105
+ teenage girl
106
+ view mirror
107
+ session
108
+ commuter
109
+ dressing room
110
+ tricycle
111
+ christmas ball
112
+ headlight
113
+ police
114
+ armchair
115
+ chart
116
+ yacht
117
+ saw
118
+ printer
119
+ rock band
120
+ gingerbread house
121
+ tag
122
+ table lamp
123
+ hockey game
124
+ slope
125
+ font
126
+ wicker basket
127
+ jewelry
128
+ quarter
129
+ software
130
+ weapon
131
+ pin
132
+ worship
133
+ painter
134
+ goal
135
+ morning light
136
+ bike
137
+ baseball bat
138
+ elevator
139
+ cuisine
140
+ sausage
141
+ stunt
142
+ wrestler
143
+ statue
144
+ landing
145
+ pillar
146
+ willow tree
147
+ sea wave
148
+ chicken
149
+ peanut
150
+ muscle
151
+ bob
152
+ tv genre
153
+ bathroom window
154
+ radish
155
+ textile
156
+ pelican
157
+ marketplace
158
+ crest
159
+ elevation map
160
+ gift
161
+ parish
162
+ traffic light
163
+ campfire
164
+ fog
165
+ award winner
166
+ beach ball
167
+ mat
168
+ white house
169
+ plaster
170
+ moped
171
+ football team
172
+ solution
173
+ bicyclist
174
+ bit
175
+ playground
176
+ darkness
177
+ cake
178
+ maple leave
179
+ mold
180
+ cracker
181
+ blueberry
182
+ rubble
183
+ container ship
184
+ pedestrian bridge
185
+ snail
186
+ parrot
187
+ form
188
+ circuit
189
+ highlight
190
+ pickup truck
191
+ koala
192
+ rain
193
+ system
194
+ weather
195
+ raincoat
196
+ soccer team
197
+ windshield
198
+ thunderstorm
199
+ mike
200
+ bird house
201
+ bridge
202
+ grandfather
203
+ restroom
204
+ animation
205
+ wilderness
206
+ clown
207
+ banana
208
+ brown
209
+ braid
210
+ dining room
211
+ kindergarten
212
+ launch event
213
+ purple
214
+ school
215
+ stairwell
216
+ brooch
217
+ movie poster image
218
+ mountain river
219
+ shelf
220
+ wicket
221
+ headboard
222
+ buddha
223
+ flower field
224
+ dugout
225
+ cd
226
+ bald eagle
227
+ lagoon
228
+ seaweed
229
+ agriculture
230
+ emergency service
231
+ maple tree
232
+ parachute
233
+ continent
234
+ amusement park
235
+ remote
236
+ bun
237
+ tackle
238
+ hospital
239
+ garage door
240
+ birthday party
241
+ friendship
242
+ go
243
+ mausoleum
244
+ jeep
245
+ raccoon
246
+ step
247
+ ice hockey team
248
+ cigarette
249
+ lace dress
250
+ forest floor
251
+ mall
252
+ captain
253
+ milk
254
+ golf course
255
+ meal
256
+ picnic table
257
+ sail
258
+ volleyball
259
+ canal
260
+ terrace
261
+ computer desk
262
+ caravan
263
+ hotel
264
+ cheerleader
265
+ nurse
266
+ museum
267
+ marsh
268
+ fox
269
+ plateau
270
+ night
271
+ twin
272
+ letter logo
273
+ autumn tree
274
+ powder
275
+ convention
276
+ creature
277
+ lighthouse
278
+ shop window
279
+ jacket
280
+ stork
281
+ taxi
282
+ trade
283
+ blackboard
284
+ olive
285
+ road sign
286
+ resort
287
+ snowflake
288
+ cemetery
289
+ travel
290
+ evening dress
291
+ picnic
292
+ drink
293
+ winter morning
294
+ football player
295
+ snack
296
+ boxing glove
297
+ dinner party
298
+ airline
299
+ swing
300
+ port
301
+ wheelbarrow
302
+ bathroom sink
303
+ sweater
304
+ ambulance
305
+ gear
306
+ oil
307
+ wii controller
308
+ array
309
+ home office
310
+ car show
311
+ mixture
312
+ profession
313
+ tree frog
314
+ square
315
+ facility
316
+ coral reef
317
+ sea wall
318
+ pizza
319
+ exhibit
320
+ demolition
321
+ trout
322
+ ring
323
+ coffee shop
324
+ bracelet
325
+ bean
326
+ lip
327
+ fencing
328
+ landscape
329
+ sitting
330
+ package
331
+ metal
332
+ bust
333
+ king
334
+ hair
335
+ window seat
336
+ wildlife
337
+ trunk
338
+ greenery
339
+ stencil
340
+ fire hydrant
341
+ bridesmaid
342
+ plaza
343
+ alps
344
+ tower bridge
345
+ crop top
346
+ crossing
347
+ cinema
348
+ pedestrian crossing
349
+ family
350
+ shopping cart
351
+ stomach
352
+ church building
353
+ screen door
354
+ skater
355
+ soccer field
356
+ kettle
357
+ mussel
358
+ raindrop
359
+ candy cane
360
+ water lily
361
+ flower girl
362
+ desert
363
+ enclosure
364
+ christmas light
365
+ kitchen
366
+ caterpillar
367
+ plaid
368
+ bath
369
+ bush
370
+ mud
371
+ ballet
372
+ knee
373
+ adult
374
+ raft
375
+ sea view
376
+ cactus
377
+ office chair
378
+ overall
379
+ rim
380
+ scaffolding
381
+ pig
382
+ cover
383
+ poster page
384
+ sprinkle
385
+ chandelier
386
+ algae
387
+ traffic
388
+ surfboard
389
+ book
390
+ filming
391
+ flash
392
+ mansion
393
+ camouflage
394
+ trouser
395
+ ticket
396
+ weed
397
+ cab
398
+ trench
399
+ elephant
400
+ huddle
401
+ sphere
402
+ christmas decoration
403
+ city
404
+ launch
405
+ doll
406
+ christmas ornament
407
+ fabric
408
+ bikini
409
+ biplane
410
+ breakfast
411
+ neighbourhood
412
+ race track
413
+ foliage
414
+ avocado
415
+ school bus
416
+ footwear
417
+ highway
418
+ ocean view
419
+ art vector illustration
420
+ wall clock
421
+ curtain
422
+ teenager
423
+ kitchen area
424
+ robot
425
+ tusk
426
+ lounge chair
427
+ beam
428
+ paddle
429
+ camel
430
+ lid
431
+ world map
432
+ city view
433
+ newlywed
434
+ cargo ship
435
+ yellow
436
+ exhibition
437
+ bend
438
+ novel
439
+ wool
440
+ ontario
441
+ bread
442
+ campus
443
+ coastline
444
+ cutting board
445
+ booth
446
+ table top
447
+ carpet
448
+ beach chair
449
+ workout
450
+ street food
451
+ fun
452
+ costumer film designer
453
+ gadget
454
+ artist
455
+ fishing village
456
+ builder
457
+ violinist
458
+ iphone
459
+ spider web
460
+ traffic sign
461
+ ruin
462
+ rescue
463
+ clipboard
464
+ seal
465
+ film director
466
+ paw
467
+ nursery
468
+ intersection
469
+ tomato sauce
470
+ taste
471
+ paddy field
472
+ christmas tree
473
+ wave
474
+ stool
475
+ watering can
476
+ rug
477
+ daytime
478
+ subway station
479
+ craft
480
+ pine forest
481
+ black
482
+ planet
483
+ motif
484
+ christmas market
485
+ glass window
486
+ college
487
+ wheat
488
+ damage
489
+ rectangle
490
+ picture frame
491
+ chess
492
+ guest room
493
+ street corner
494
+ religion
495
+ seed
496
+ puzzle
497
+ freeway
498
+ beauty
499
+ ocean
500
+ watch
501
+ mother
502
+ garage
503
+ quote
504
+ dj
505
+ supporter
506
+ hip hop artist
507
+ muffin
508
+ eiffel tower
509
+ cash
510
+ firefighter
511
+ cauliflower
512
+ bunker
513
+ sled
514
+ manicure
515
+ shark
516
+ stall
517
+ jungle
518
+ family home
519
+ tour bus
520
+ chimney
521
+ touchdown
522
+ roundabout
523
+ coyote
524
+ street scene
525
+ tank
526
+ wedding dress
527
+ mantle
528
+ bedroom window
529
+ coconut
530
+ chapel
531
+ goat
532
+ living space
533
+ rock wall
534
+ polka dot
535
+ railway
536
+ mandala
537
+ mango
538
+ lesson
539
+ mountain landscape
540
+ team photo
541
+ bookshelf
542
+ meter
543
+ bulldog
544
+ evening sun
545
+ stick
546
+ card
547
+ pink
548
+ fish pond
549
+ paint
550
+ pill
551
+ cart
552
+ pea
553
+ van
554
+ album
555
+ football college game
556
+ mountain pass
557
+ doughnut
558
+ ski slope
559
+ match
560
+ official
561
+ shadow
562
+ organ
563
+ celebration
564
+ coin
565
+ log cabin
566
+ firework display
567
+ present
568
+ twig
569
+ chef
570
+ confetti
571
+ footpath
572
+ tour
573
+ ponytail
574
+ artwork
575
+ race car
576
+ club
577
+ season
578
+ hose
579
+ pencil
580
+ aircraft
581
+ rock formation
582
+ wardrobe
583
+ participant
584
+ politician
585
+ engineer
586
+ peace
587
+ filter
588
+ sailing boat
589
+ water bottle
590
+ service dog
591
+ poodle
592
+ loki
593
+ statesman
594
+ sleeping bag
595
+ outskirt
596
+ clock
597
+ factory
598
+ oak tree
599
+ physician
600
+ color
601
+ room
602
+ stairway
603
+ company
604
+ lady
605
+ graph
606
+ faucet
607
+ tablecloth
608
+ subway train
609
+ chocolate chip cookie
610
+ headquarters
611
+ screw
612
+ goggle
613
+ halloween
614
+ city street
615
+ swirl
616
+ cord
617
+ forward
618
+ bone
619
+ bedding
620
+ archway
621
+ wig
622
+ lobby
623
+ mask
624
+ attic
625
+ kitchen table
626
+ skylight
627
+ fire
628
+ exit
629
+ oil painting
630
+ passenger
631
+ meditation
632
+ salmon
633
+ fedora
634
+ rubber stamp
635
+ orange juice
636
+ arch
637
+ scientist
638
+ stroll
639
+ manhattan
640
+ float
641
+ baseball uniform
642
+ circle
643
+ church
644
+ decker bus
645
+ competitor
646
+ zoo
647
+ basketball team
648
+ tourist
649
+ daughter
650
+ silverware
651
+ ceiling fan
652
+ birth
653
+ vase
654
+ jack
655
+ mushroom
656
+ spiral
657
+ cage
658
+ limb
659
+ salad
660
+ ad
661
+ control
662
+ earth
663
+ party
664
+ bolt
665
+ tractor
666
+ barley
667
+ wedding photo
668
+ hawk
669
+ warehouse
670
+ vegetable garden
671
+ chocolate cake
672
+ cabbage
673
+ floor window
674
+ baby shower
675
+ magnifying glass
676
+ table
677
+ stethoscope
678
+ reading
679
+ mission
680
+ croissant
681
+ gift box
682
+ rocket
683
+ forest road
684
+ cooking
685
+ suite
686
+ hill country
687
+ motorcycle
688
+ baseball player
689
+ angle
690
+ drug
691
+ sport association
692
+ championship
693
+ family portrait
694
+ florist
695
+ softball
696
+ egret
697
+ office
698
+ plywood
699
+ jockey
700
+ mosque
701
+ brunch
702
+ beanie
703
+ office building
704
+ pattern
705
+ calendar
706
+ indoor
707
+ pepper
708
+ ledge
709
+ trail
710
+ fuel
711
+ laptop computer
712
+ tennis shoe
713
+ deck chair
714
+ guitarist
715
+ barn
716
+ surgery
717
+ cartoon illustration
718
+ nebula
719
+ railroad
720
+ mountain goat
721
+ goose
722
+ car door
723
+ cheer
724
+ liquid
725
+ hardwood floor
726
+ pathway
727
+ acorn
728
+ gull
729
+ airliner
730
+ couch
731
+ lake house
732
+ spaghetti
733
+ promenade
734
+ collection
735
+ garden
736
+ bank
737
+ robin
738
+ tennis ball
739
+ peony
740
+ gymnast
741
+ lavender
742
+ deck
743
+ test
744
+ riverside
745
+ rapper
746
+ domino
747
+ bride
748
+ mouse
749
+ basil
750
+ wedding couple
751
+ ocean wave
752
+ arm
753
+ kitchen floor
754
+ grove
755
+ family member
756
+ backyard
757
+ raspberry
758
+ forest fire
759
+ officer
760
+ hibiscus
761
+ canyon
762
+ composer
763
+ signature
764
+ olive oil
765
+ hibiscus flower
766
+ rose
767
+ vector icon
768
+ sunrise
769
+ horseback
770
+ motor scooter
771
+ office worker
772
+ tradition
773
+ ingredient
774
+ washing machine
775
+ lighting
776
+ bagel
777
+ sailboat
778
+ policeman
779
+ mare
780
+ graphic
781
+ halloween pumpkin
782
+ stock
783
+ pilot
784
+ education
785
+ team
786
+ body
787
+ horse
788
+ kimono
789
+ bazaar
790
+ bag
791
+ recording studio
792
+ parsley
793
+ entrance
794
+ denim
795
+ vet
796
+ horse farm
797
+ charcoal
798
+ architecture
799
+ glass vase
800
+ puppy
801
+ estuary
802
+ television show host
803
+ city bus
804
+ shoulder
805
+ beast
806
+ balance
807
+ golfer
808
+ roadside
809
+ denim jacket
810
+ stone wall
811
+ counter top
812
+ app icon
813
+ toast
814
+ head coach
815
+ ham
816
+ warrior
817
+ gem
818
+ refrigerator
819
+ snowman
820
+ construction worker
821
+ coal
822
+ website
823
+ morning fog
824
+ mustard
825
+ human
826
+ owl
827
+ puppy dog
828
+ piggy bank
829
+ vegetation
830
+ pirate
831
+ action film
832
+ marshmallow
833
+ thanksgiving
834
+ business
835
+ disease
836
+ signage
837
+ greeting
838
+ skate park
839
+ tile
840
+ mouth
841
+ spinach
842
+ vacation
843
+ leader
844
+ shrine
845
+ walker
846
+ science fiction film
847
+ bill
848
+ rabbit
849
+ motor boat
850
+ bar
851
+ radio
852
+ barge
853
+ tail
854
+ chainsaw
855
+ gallery
856
+ rainbow
857
+ pasta
858
+ padlock
859
+ web
860
+ pastry
861
+ ink
862
+ reef
863
+ school uniform
864
+ shawl
865
+ treasure
866
+ peach
867
+ dinner table
868
+ injury
869
+ harbor
870
+ witch
871
+ car dealership
872
+ litter
873
+ gesture
874
+ documentary
875
+ marriage
876
+ sea shell
877
+ priest
878
+ dome
879
+ kit
880
+ icon
881
+ seaside
882
+ bucket
883
+ entertainment
884
+ stable
885
+ hat
886
+ puddle
887
+ sock
888
+ shopper
889
+ technology
890
+ harbour
891
+ orbit
892
+ antler
893
+ tube
894
+ flag waving
895
+ cook
896
+ tight
897
+ commander
898
+ farmland
899
+ switch
900
+ hiker
901
+ wedding ceremony
902
+ award ceremony
903
+ champion
904
+ chopstick
905
+ farmhouse
906
+ performer
907
+ spike
908
+ accident
909
+ cruise ship
910
+ passenger train
911
+ attraction
912
+ entertainer
913
+ rear view
914
+ sidewalk
915
+ parade
916
+ racing
917
+ plane
918
+ ritual
919
+ peacock
920
+ pocket
921
+ plum
922
+ drop
923
+ carrot
924
+ floor
925
+ sunset
926
+ troop
927
+ architect
928
+ coffee table
929
+ dust
930
+ outline
931
+ leather
932
+ charity event
933
+ heat
934
+ whale
935
+ laundry
936
+ coconut tree
937
+ crosswalk
938
+ pony
939
+ ant
940
+ pipe
941
+ string
942
+ coat
943
+ angel
944
+ beef
945
+ church tower
946
+ dish
947
+ pitch
948
+ cupboard
949
+ thermometer
950
+ dirt field
951
+ fireworks
952
+ minute
953
+ cane
954
+ pajama
955
+ flower garden
956
+ autumn
957
+ trash can
958
+ dachshund
959
+ banana tree
960
+ tray
961
+ moose
962
+ roadway
963
+ carnival
964
+ antenna
965
+ pole
966
+ castle wall
967
+ ram
968
+ cattle
969
+ hay
970
+ cookie
971
+ swimmer
972
+ baseball team
973
+ strait
974
+ hedge
975
+ jet
976
+ fire pit
977
+ octopus
978
+ calf
979
+ cube
980
+ opera
981
+ cardboard box
982
+ tiara
983
+ kitchen sink
984
+ prairie
985
+ bowl
986
+ galaxy
987
+ straw hat
988
+ linen
989
+ ski resort
990
+ stitch
991
+ street lamp
992
+ motorist
993
+ icicle
994
+ stain
995
+ flora
996
+ drain
997
+ kitchen cabinet
998
+ decor
999
+ bouquet
1000
+ pound
1001
+ interior design
1002
+ nail polish
1003
+ figurine
1004
+ tomb
1005
+ disc
1006
+ twist
1007
+ blouse
1008
+ ribbon
1009
+ figure
1010
+ burger
1011
+ cork
1012
+ soccer goalkeeper
1013
+ train bridge
1014
+ drinking water
1015
+ dew
1016
+ baker
1017
+ storm cloud
1018
+ tarmac
1019
+ tv drama
1020
+ sponge
1021
+ magnet
1022
+ sailor
1023
+ entry
1024
+ swan
1025
+ exercise
1026
+ sloth
1027
+ jewel
1028
+ scuba diver
1029
+ bite
1030
+ cat tree
1031
+ tent
1032
+ can
1033
+ tennis match
1034
+ ecosystem
1035
+ picket fence
1036
+ palm
1037
+ train car
1038
+ frying pan
1039
+ rally
1040
+ tablet pc
1041
+ reindeer
1042
+ image
1043
+ wolf
1044
+ chin
1045
+ conservatory
1046
+ flood water
1047
+ cityscape
1048
+ beach sand
1049
+ car park
1050
+ pavement
1051
+ farm field
1052
+ swimming
1053
+ winter storm
1054
+ stem
1055
+ pillow
1056
+ inning
1057
+ gorilla
1058
+ desk
1059
+ avenue
1060
+ fern
1061
+ money
1062
+ pearl
1063
+ train station
1064
+ skillet
1065
+ nap
1066
+ barber
1067
+ library
1068
+ freezer
1069
+ label
1070
+ rainforest
1071
+ parking sign
1072
+ mirror
1073
+ wing
1074
+ noodle
1075
+ press room
1076
+ sculpture
1077
+ tablet
1078
+ viewer
1079
+ prayer
1080
+ mini
1081
+ mechanic
1082
+ laugh
1083
+ rice field
1084
+ hand
1085
+ mustache
1086
+ mountain road
1087
+ catwalk
1088
+ conference
1089
+ cape
1090
+ installation
1091
+ musician
1092
+ stream
1093
+ machine
1094
+ speech
1095
+ crocodile
1096
+ soccer match
1097
+ town square
1098
+ passport
1099
+ post box
1100
+ point
1101
+ stone building
1102
+ motorway
1103
+ mix
1104
+ dentist
1105
+ businessperson
1106
+ happiness
1107
+ boat
1108
+ vineyard
1109
+ treadmill
1110
+ glass wall
1111
+ water droplet
1112
+ coffee mug
1113
+ graduate
1114
+ sunflower
1115
+ parliament
1116
+ shepherd
1117
+ movie
1118
+ wine
1119
+ orchard
1120
+ tulip
1121
+ motherboard
1122
+ cup
1123
+ broom
1124
+ spot
1125
+ drawing
1126
+ polo shirt
1127
+ graduation
1128
+ film producer
1129
+ moonlight
1130
+ glow
1131
+ film format
1132
+ t shirt
1133
+ rock face
1134
+ sword
1135
+ clinic
1136
+ festival day
1137
+ meadow
1138
+ staple
1139
+ pupil
1140
+ training ground
1141
+ rider
1142
+ flower
1143
+ foal
1144
+ wharf
1145
+ foot bridge
1146
+ shooting
1147
+ top
1148
+ mast
1149
+ police car
1150
+ robe
1151
+ wedding bouquet
1152
+ stop sign
1153
+ birthday cake
1154
+ glitter
1155
+ butter
1156
+ scooter
1157
+ tundra
1158
+ superhero
1159
+ pocket watch
1160
+ inscription
1161
+ youngster
1162
+ fruit tree
1163
+ movie poster
1164
+ engine
1165
+ foundation
1166
+ motorcyclist
1167
+ take
1168
+ woman
1169
+ antelope
1170
+ country artist
1171
+ road trip
1172
+ typewriter
1173
+ tuxedo
1174
+ brand
1175
+ pine
1176
+ bathroom
1177
+ paradise
1178
+ texture
1179
+ balloon
1180
+ dining table
1181
+ home
1182
+ computer screen
1183
+ actor
1184
+ clip
1185
+ tv tower
1186
+ panorama
1187
+ summit
1188
+ cat
1189
+ plot
1190
+ eagle
1191
+ dancer
1192
+ pup
1193
+ studio shot
1194
+ tear
1195
+ bird bath
1196
+ classroom
1197
+ bookstore
1198
+ city wall
1199
+ tv programme
1200
+ blade
1201
+ easel
1202
+ buttercream
1203
+ sweet
1204
+ designer
1205
+ diamond
1206
+ handshake
1207
+ herb
1208
+ corn field
1209
+ seafront
1210
+ concrete
1211
+ street artist
1212
+ gas
1213
+ stamp
1214
+ window display
1215
+ paper
1216
+ note
1217
+ pint
1218
+ quarry
1219
+ research
1220
+ fixture
1221
+ manager
1222
+ soil
1223
+ leopard
1224
+ board game
1225
+ ladder
1226
+ stop light
1227
+ island
1228
+ ramp
1229
+ football match
1230
+ icing
1231
+ drill
1232
+ currency
1233
+ summer evening
1234
+ topping
1235
+ pyramid
1236
+ pomegranate
1237
+ cell
1238
+ ivy
1239
+ squad
1240
+ scenery
1241
+ computer
1242
+ locomotive
1243
+ surf
1244
+ mascot
1245
+ dune
1246
+ path
1247
+ duck
1248
+ twilight
1249
+ wire
1250
+ bow tie
1251
+ strike
1252
+ cormorant
1253
+ car wash
1254
+ crane
1255
+ market
1256
+ philosopher
1257
+ alarm clock
1258
+ camera
1259
+ birch
1260
+ greeting card
1261
+ plain
1262
+ clay
1263
+ donut
1264
+ lock
1265
+ moth
1266
+ laboratory
1267
+ fan
1268
+ violin
1269
+ jazz fusion artist
1270
+ mountain biker
1271
+ terrain
1272
+ magazine
1273
+ pickup
1274
+ comedy film
1275
+ smartphone
1276
+ film
1277
+ bed
1278
+ microwave oven
1279
+ tournament
1280
+ lawn
1281
+ car window
1282
+ alligator
1283
+ screen
1284
+ jetty
1285
+ shopping bag
1286
+ landscape view
1287
+ cabinetry
1288
+ friendly match
1289
+ thing
1290
+ petal
1291
+ shopping center
1292
+ transport
1293
+ ballet dancer
1294
+ shoreline
1295
+ princess
1296
+ car seat
1297
+ parking meter
1298
+ green
1299
+ vodka
1300
+ band
1301
+ rock
1302
+ costume
1303
+ warning sign
1304
+ strip
1305
+ plaque
1306
+ wheelchair
1307
+ headband
1308
+ ginger
1309
+ dice
1310
+ media
1311
+ hairdresser
1312
+ press
1313
+ living room
1314
+ stove
1315
+ player
1316
+ cherry
1317
+ workshop
1318
+ carving
1319
+ embroidery
1320
+ doodle
1321
+ adventure
1322
+ rugby player
1323
+ monument
1324
+ brush
1325
+ marker
1326
+ loft
1327
+ postcard
1328
+ collage
1329
+ ball
1330
+ professor
1331
+ dresser
1332
+ gig
1333
+ festival
1334
+ blackbird
1335
+ makeup artist
1336
+ video camera
1337
+ sticker
1338
+ peak
1339
+ wildflower
1340
+ santa hat
1341
+ rodeo
1342
+ wedding photographer
1343
+ guy
1344
+ staff
1345
+ waterfall
1346
+ operation
1347
+ defender
1348
+ falcon
1349
+ haze
1350
+ individual
1351
+ gentleman
1352
+ greyhound
1353
+ rocking chair
1354
+ rice
1355
+ garbage
1356
+ platter
1357
+ chocolate
1358
+ splash
1359
+ business suit
1360
+ cheetah
1361
+ valley
1362
+ maze
1363
+ trampoline
1364
+ garland
1365
+ slalom
1366
+ unicorn
1367
+ tree stump
1368
+ painting
1369
+ romance
1370
+ fight
1371
+ alcohol
1372
+ ghost
1373
+ fondant
1374
+ spa
1375
+ shutter
1376
+ death
1377
+ demonstration
1378
+ cotton
1379
+ pier
1380
+ flea market
1381
+ history
1382
+ savannah
1383
+ fist
1384
+ aisle
1385
+ crew
1386
+ jug
1387
+ pose
1388
+ anchor
1389
+ teapot
1390
+ boat house
1391
+ business team
1392
+ tripod
1393
+ bee
1394
+ pebble
1395
+ mattress
1396
+ canvas
1397
+ hallway
1398
+ campaign
1399
+ pod
1400
+ lake district
1401
+ article
1402
+ white
1403
+ sofa
1404
+ honey
1405
+ marathon
1406
+ pancake
1407
+ tourist attraction
1408
+ wedding gown
1409
+ battle
1410
+ shelving
1411
+ sea
1412
+ sheet music
1413
+ pie
1414
+ yarn
1415
+ construction site
1416
+ flyer
1417
+ tie
1418
+ star
1419
+ lettuce
1420
+ martial artist
1421
+ dart
1422
+ straw
1423
+ reflection
1424
+ conference room
1425
+ temperature
1426
+ rugby
1427
+ mosquito
1428
+ physicist
1429
+ rock climber
1430
+ crash
1431
+ backdrop
1432
+ toilet seat
1433
+ sand castle
1434
+ water park
1435
+ toy car
1436
+ waste
1437
+ luxury
1438
+ hangar
1439
+ rv
1440
+ tree trunk
1441
+ board
1442
+ gold
1443
+ project picture
1444
+ cap
1445
+ cottage
1446
+ relief
1447
+ attire
1448
+ microscope
1449
+ battery
1450
+ roll
1451
+ line
1452
+ parking garage
1453
+ crystal
1454
+ broadcasting
1455
+ brick wall
1456
+ lab
1457
+ flooring
1458
+ meeting
1459
+ 3d cg rendering
1460
+ desktop computer
1461
+ cowboy
1462
+ sailing ship
1463
+ junction
1464
+ hairstyle
1465
+ homework
1466
+ profile
1467
+ model
1468
+ flower pot
1469
+ street light
1470
+ salt lake
1471
+ maple
1472
+ space
1473
+ blizzard
1474
+ throw
1475
+ zebras
1476
+ brochure
1477
+ constellation
1478
+ beak
1479
+ kilt
1480
+ pond
1481
+ blue sky
1482
+ sneaker
1483
+ sand dune
1484
+ morning sun
1485
+ almond
1486
+ grill
1487
+ curl
1488
+ basketball girl game
1489
+ chameleon
1490
+ toilet bowl
1491
+ prince
1492
+ keyboard
1493
+ queen
1494
+ computer monitor
1495
+ writing
1496
+ crown
1497
+ basilica
1498
+ kiss
1499
+ house
1500
+ parking
1501
+ football competition
1502
+ shell
1503
+ sport equipment
1504
+ comedy
1505
+ baboon
1506
+ vendor
1507
+ rise building
1508
+ wrap
1509
+ food truck
1510
+ cat bed
1511
+ rickshaw
1512
+ flare
1513
+ teal
1514
+ nectar
1515
+ eclipse
1516
+ vehicle
1517
+ steam locomotive
1518
+ gorge
1519
+ cow
1520
+ christmas card
1521
+ demonstrator
1522
+ memorial
1523
+ towel
1524
+ jewellery
1525
+ train
1526
+ frisbee
1527
+ baseball game
1528
+ fur
1529
+ afternoon sun
1530
+ community
1531
+ sparkler
1532
+ bandage
1533
+ firework
1534
+ dollar
1535
+ pasture
1536
+ video
1537
+ bus
1538
+ tree house
1539
+ seashore
1540
+ field
1541
+ hamburger
1542
+ souvenir
1543
+ hedgehog
1544
+ worm
1545
+ pine cone
1546
+ osprey
1547
+ dinosaur
1548
+ vegetable
1549
+ junk
1550
+ poster
1551
+ army
1552
+ winger
1553
+ bundle
1554
+ stage
1555
+ growth
1556
+ wedding party
1557
+ service
1558
+ blanket
1559
+ ruler
1560
+ eye
1561
+ credit card
1562
+ castle
1563
+ diner
1564
+ hut
1565
+ elk
1566
+ hard rock artist
1567
+ nun
1568
+ dog breed
1569
+ nest
1570
+ drama film
1571
+ number icon
1572
+ water tank
1573
+ giraffe
1574
+ altar
1575
+ pavilion
1576
+ tv personality
1577
+ suv
1578
+ street vendor
1579
+ street sign
1580
+ ditch
1581
+ debris
1582
+ foam
1583
+ takeoff
1584
+ spice
1585
+ mountain lake
1586
+ tea
1587
+ orchestra
1588
+ spacecraft
1589
+ counter
1590
+ abbey
1591
+ mountain
1592
+ hydrangea
1593
+ racer
1594
+ orange tree
1595
+ tide
1596
+ cowboy hat
1597
+ rapid
1598
+ town
1599
+ wild
1600
+ herd
1601
+ vein
1602
+ driveway
1603
+ jar
1604
+ bark
1605
+ illustration
1606
+ horror film
1607
+ corn
1608
+ stroller
1609
+ industry
1610
+ mountain stream
1611
+ gym
1612
+ neckline
1613
+ pan
1614
+ client
1615
+ spectator
1616
+ eggplant
1617
+ camper
1618
+ fawn
1619
+ hoodie
1620
+ meat
1621
+ lemonade
1622
+ food market
1623
+ slum
1624
+ comic book character
1625
+ flower market
1626
+ love
1627
+ palace
1628
+ gun
1629
+ heel
1630
+ shopping street
1631
+ shooting basketball guard
1632
+ family photo
1633
+ rooftop
1634
+ laundry basket
1635
+ airport runway
1636
+ horn
1637
+ face mask
1638
+ flight
1639
+ appetizer
1640
+ violet
1641
+ country lane
1642
+ cement
1643
+ instrument
1644
+ tv actor
1645
+ spark
1646
+ celebrity
1647
+ award
1648
+ country house
1649
+ standing
1650
+ auction
1651
+ date
1652
+ engagement
1653
+ puck
1654
+ advertisement
1655
+ chair
1656
+ zebra
1657
+ driftwood
1658
+ bumblebee
1659
+ maple leaf
1660
+ bonnet
1661
+ orange
1662
+ water tower
1663
+ door
1664
+ singer
1665
+ floor plan
1666
+ discussion
1667
+ theatre
1668
+ pilgrim
1669
+ mug
1670
+ branch
1671
+ window sill
1672
+ baseball pitcher
1673
+ bakery
1674
+ lollipop
1675
+ basketball player
1676
+ toilet paper
1677
+ chalkboard
1678
+ cabin
1679
+ sign
1680
+ night sky
1681
+ cannon
1682
+ fishing net
1683
+ submarine
1684
+ suit
1685
+ fur coat
1686
+ wine bottle
1687
+ folder
1688
+ street art
1689
+ suspension bridge
1690
+ evening sky
1691
+ billboard
1692
+ postage stamp
1693
+ newspaper
1694
+ transportation
1695
+ surgeon
1696
+ light
1697
+ park
1698
+ horizon
1699
+ road
1700
+ sand bar
1701
+ trumpet
1702
+ lounge
1703
+ cloud forest
1704
+ birthday celebration
1705
+ balcony
1706
+ anime
1707
+ beehive
1708
+ umbrella
1709
+ goldfish
1710
+ baseball cap
1711
+ waterhole
1712
+ ceiling
1713
+ carousel
1714
+ backpack
1715
+ plant pot
1716
+ atmosphere
1717
+ sunflower field
1718
+ spire
1719
+ vision
1720
+ woodpecker
1721
+ chip
1722
+ pool table
1723
+ lotus flower
1724
+ cone
1725
+ humpback whale
1726
+ reservoir
1727
+ hunt
1728
+ piano
1729
+ plate
1730
+ dining area
1731
+ luggage
1732
+ skier
1733
+ dance floor
1734
+ crow
1735
+ stair
1736
+ overpass
1737
+ opera house
1738
+ bear
1739
+ jazz artist
1740
+ water
1741
+ vessel
1742
+ cast
1743
+ yard
1744
+ cathedral
1745
+ basketball hoop
1746
+ graveyard
1747
+ sound
1748
+ berry
1749
+ onlooker
1750
+ fauna
1751
+ birch tree
1752
+ retail
1753
+ hill
1754
+ skeleton
1755
+ journalist
1756
+ frost
1757
+ basket
1758
+ nail
1759
+ dusk
1760
+ trash
1761
+ dawn
1762
+ clover
1763
+ hen
1764
+ volcano
1765
+ basketball coach
1766
+ home decor
1767
+ charge
1768
+ haircut
1769
+ sense
1770
+ university
1771
+ lizard
1772
+ daisy
1773
+ tablet computer
1774
+ grass field
1775
+ prison
1776
+ metal artist
1777
+ bathroom mirror
1778
+ window frame
1779
+ chest
1780
+ flavor
1781
+ pop country artist
1782
+ market square
1783
+ monkey
1784
+ blog
1785
+ deer
1786
+ speech bubble
1787
+ dog
1788
+ independence day
1789
+ girl
1790
+ boy
1791
+ tartan
1792
+ furniture
1793
+ appliance
1794
+ office window
1795
+ fish boat
1796
+ sand box
1797
+ tv sitcom
1798
+ drama
1799
+ sleigh
1800
+ depression
1801
+ paper towel
1802
+ baseball
1803
+ protestor
1804
+ grape
1805
+ wedding cake
1806
+ invitation
1807
+ accessory
1808
+ pick
1809
+ grandparent
1810
+ racket
1811
+ tea plantation
1812
+ outdoors
1813
+ egg
1814
+ glass bowl
1815
+ sun
1816
+ organization
1817
+ lion
1818
+ panel
1819
+ station
1820
+ wallpaper
1821
+ helicopter
1822
+ salt
1823
+ vanity
1824
+ patio
1825
+ lunch
1826
+ street performer
1827
+ mountain range
1828
+ soup
1829
+ bacon
1830
+ power station
1831
+ cantilever bridge
1832
+ hummingbird
1833
+ shirt
1834
+ rope
1835
+ hip
1836
+ chalk
1837
+ pendant
1838
+ choir
1839
+ tv
1840
+ lichen
1841
+ railway bridge
1842
+ art gallery
1843
+ bartender
1844
+ wagon
1845
+ baby elephant
1846
+ accordion
1847
+ horseshoe
1848
+ building site
1849
+ clutch
1850
+ harvest
1851
+ savanna
1852
+ geranium
1853
+ business woman
1854
+ paddock
1855
+ patch
1856
+ beech tree
1857
+ war
1858
+ suburbs
1859
+ hospital bed
1860
+ motorcycle racer
1861
+ moss
1862
+ gravel
1863
+ government agency
1864
+ dollar bill
1865
+ father
1866
+ fjord
1867
+ concert
1868
+ nut
1869
+ wedding photography
1870
+ finish line
1871
+ home plate
1872
+ food
1873
+ nose
1874
+ thumb
1875
+ village
1876
+ dining room table
1877
+ bumper
1878
+ monster
1879
+ blackberry
1880
+ lime
1881
+ conflict
1882
+ gala
1883
+ wallet
1884
+ wrist
1885
+ hug
1886
+ mermaid
1887
+ lava
1888
+ lawyer
1889
+ folk rock artist
1890
+ arena
1891
+ onion
1892
+ toothbrush
1893
+ fashion
1894
+ perfume
1895
+ flip
1896
+ triangle
1897
+ woodland
1898
+ mail
1899
+ grasshopper
1900
+ studio
1901
+ wood floor
1902
+ den
1903
+ racquet
1904
+ cello
1905
+ lemur
1906
+ astronaut
1907
+ glass table
1908
+ blood
1909
+ dvd
1910
+ planter
1911
+ silver
1912
+ leash
1913
+ master bedroom
1914
+ forest
1915
+ batter
1916
+ shoe
1917
+ engraving
1918
+ opening
1919
+ product
1920
+ toe
1921
+ cocktail
1922
+ mallard duck
1923
+ bike ride
1924
+ oasis
1925
+ wedding ring
1926
+ cinematographer
1927
+ holly
1928
+ autograph
1929
+ fence
1930
+ ice cube
1931
+ cove
1932
+ pineapple
1933
+ aurora
1934
+ glass bead
1935
+ produce
1936
+ apartment building
1937
+ cob
1938
+ miniature
1939
+ cockpit
1940
+ flashlight
1941
+ frog
1942
+ sheep
1943
+ groom
1944
+ steel
1945
+ watermelon
1946
+ clip art
1947
+ paper plate
1948
+ ostrich
1949
+ contour
1950
+ mural
1951
+ cub
1952
+ paisley bandanna
1953
+ winery
1954
+ turn
1955
+ handle
1956
+ satellite
1957
+ post
1958
+ pork
1959
+ child
1960
+ asphalt
1961
+ grocery store
1962
+ vulture
1963
+ trolley
1964
+ nightclub
1965
+ brick
1966
+ trailer
1967
+ compass
1968
+ cereal
1969
+ cafe
1970
+ cartoon character
1971
+ sugar
1972
+ fiction book
1973
+ glass floor
1974
+ umpire
1975
+ guitar
1976
+ hamster
1977
+ protester
1978
+ airplane
1979
+ garment
1980
+ blazer
1981
+ railway line
1982
+ wedding
1983
+ shoe box
1984
+ parking lot
1985
+ construction
1986
+ graduation ceremony
1987
+ tram
1988
+ telescope
1989
+ copper
1990
+ pain
1991
+ autumn forest
1992
+ guest house
1993
+ partner
1994
+ crayon
1995
+ dip
1996
+ boot
1997
+ corridor
1998
+ computer keyboard
1999
+ hockey player
2000
+ chicken coop
2001
+ bus station
2002
+ gathering
2003
+ ankle
2004
+ bunk bed
2005
+ wood table
2006
+ football coach
2007
+ monarch
2008
+ pharmacy
2009
+ legging
2010
+ mannequin
2011
+ female
2012
+ train track
2013
+ stack
2014
+ canopy
2015
+ design element
2016
+ grandmother
2017
+ symbol
2018
+ beach hut
2019
+ zucchini
2020
+ bomb
2021
+ businessman
2022
+ skyscraper
2023
+ tongue
2024
+ case
2025
+ sparkle
2026
+ highland
2027
+ ballroom
2028
+ prom
2029
+ estate
2030
+ customer
2031
+ archipelago
2032
+ cheese
2033
+ debate
2034
+ carriage
2035
+ bulldozer
2036
+ pumpkin
2037
+ sitting room
2038
+ gas station
2039
+ wedding reception
2040
+ camp
2041
+ dog bed
2042
+ tower
2043
+ property
2044
+ river bed
2045
+ pop latin artist
2046
+ fridge
2047
+ wine glass
2048
+ coast
2049
+ beer
2050
+ tow truck
2051
+ fire truck
2052
+ mountain bike
2053
+ thigh
2054
+ heron
2055
+ boat ride
2056
+ gondola
2057
+ turquoise
2058
+ lake
2059
+ llama
2060
+ kitty
2061
+ tin
2062
+ waiting room
2063
+ coffee cup
2064
+ socialite
2065
+ guard
2066
+ tap
2067
+ waterway
2068
+ forehead
2069
+ list
2070
+ erosion
2071
+ box
2072
+ sea lion
2073
+ pollen
2074
+ dam
2075
+ wasp
2076
+ salon
2077
+ tennis tournament
2078
+ flower box
2079
+ aquarium
2080
+ rain cloud
2081
+ clothing store
2082
+ lead singer
2083
+ cupcake
2084
+ tortoise
2085
+ lettering
2086
+ sport facility
2087
+ dance
2088
+ dog house
2089
+ nature
2090
+ football
2091
+ rooster
2092
+ footballer
2093
+ railway track
2094
+ crowd
2095
+ fishing rod
2096
+ silhouette
2097
+ wind turbine
2098
+ sari
2099
+ bus window
2100
+ cloud
2101
+ charity
2102
+ medal
2103
+ yoga
2104
+ event
2105
+ veil
2106
+ fashion menswear milan week
2107
+ news
2108
+ knife
2109
+ print
2110
+ screen tv
2111
+ walnut
2112
+ fungus
2113
+ ice cream
2114
+ computer mouse
2115
+ play
2116
+ tribe
2117
+ picture
2118
+ video game
2119
+ business card
2120
+ music festival
2121
+ rack
2122
+ envelope
2123
+ shower
2124
+ dirt road
2125
+ mine
2126
+ oyster
2127
+ monarch butterfly
2128
+ dude
2129
+ fruit salad
2130
+ podium
2131
+ fork
2132
+ lace
2133
+ test match
2134
+ boulder
2135
+ cricket player
2136
+ staircase
2137
+ peninsula
2138
+ shopping
2139
+ popcorn
2140
+ oak
2141
+ market stall
2142
+ pine tree
2143
+ mountaineer
2144
+ student
2145
+ closet
2146
+ hood
2147
+ handstand
2148
+ centerpiece
2149
+ insect
2150
+ patient
2151
+ makeover
2152
+ tennis player
2153
+ sheet
2154
+ park bench
2155
+ apple
2156
+ organism
2157
+ hook
2158
+ turkey
2159
+ tangerine
2160
+ sibling
2161
+ shopping mall
2162
+ bird
2163
+ scarf
2164
+ smoothie
2165
+ net
2166
+ grass
2167
+ napkin
2168
+ ray
2169
+ eyebrow
2170
+ laptop keyboard
2171
+ motorbike
2172
+ woman hand
2173
+ oven
2174
+ book cover
2175
+ easter egg
2176
+ microwave
2177
+ sand
2178
+ snapshot
2179
+ soccer ball
2180
+ makeup
2181
+ knight
2182
+ bowling ball
2183
+ shower curtain
2184
+ flame
2185
+ lightning
2186
+ running
2187
+ power plant
2188
+ crib
2189
+ cartoon
2190
+ moat
2191
+ fashion girl
2192
+ wedding invitation
2193
+ bottle
2194
+ cliff
2195
+ monastery
2196
+ file photo
2197
+ apartment
2198
+ casino
2199
+ cream
2200
+ sweatshirt
2201
+ storm
2202
+ cruise
2203
+ teddy bear
2204
+ shovel
2205
+ wind farm
2206
+ writer
2207
+ dock
2208
+ professional
2209
+ hotel room
2210
+ job
2211
+ monitor
2212
+ donkey
2213
+ pass
2214
+ interview
2215
+ duchess
2216
+ mark
2217
+ plank
2218
+ beard
2219
+ zombie
2220
+ trio
2221
+ channel
2222
+ cricket team
2223
+ windmill
2224
+ vest
2225
+ diagram
2226
+ cable
2227
+ winter scene
2228
+ golden gate bridge
2229
+ buffalo
2230
+ studio portrait
2231
+ pagoda
2232
+ whiskey
2233
+ freight train
2234
+ kite
2235
+ future
2236
+ steam train
2237
+ phone box
2238
+ headset
2239
+ wood
2240
+ snowboarder
2241
+ paper bag
2242
+ slide
2243
+ grapefruit
2244
+ seating
2245
+ morning
2246
+ bronze sculpture
2247
+ theatre actor
2248
+ stump
2249
+ jean
2250
+ landmark
2251
+ jam
2252
+ waist
2253
+ watercolor
2254
+ hammock
2255
+ light fixture
2256
+ ice
2257
+ basin
2258
+ beverage
2259
+ shelter
2260
+ premiere
2261
+ mound
2262
+ ear
2263
+ bronze
2264
+ sunlight
2265
+ street
2266
+ energy
2267
+ barn door
2268
+ hike
2269
+ fleet
2270
+ claw
2271
+ beach
2272
+ pepperoni
2273
+ bin
2274
+ trainer
2275
+ buffet
2276
+ archive
2277
+ toddler
2278
+ referee
2279
+ bay window
2280
+ dove
2281
+ production company
2282
+ evening light
2283
+ gate
2284
+ farm
2285
+ reed
2286
+ fruit stand
2287
+ explorer
2288
+ snow storm
2289
+ throw pillow
2290
+ button
2291
+ display case
2292
+ bookcase
2293
+ lead
2294
+ lipstick
2295
+ basketball court
2296
+ cargo
2297
+ ensemble
2298
+ pope
2299
+ clock tower
2300
+ teen
2301
+ speaker
2302
+ rat
2303
+ laptop
2304
+ ski
2305
+ mess
2306
+ stadium
2307
+ ferry boat
2308
+ bunny
2309
+ waterfront
2310
+ downtown
2311
+ sink
2312
+ press conference
2313
+ dinner
2314
+ condiment
2315
+ thread
2316
+ audience
2317
+ grid
2318
+ car
2319
+ plastic
2320
+ people
2321
+ barbecue
2322
+ pigeon
2323
+ urinal
2324
+ seagull
2325
+ volunteer
2326
+ hockey
2327
+ fir tree
2328
+ pollution
2329
+ trial
2330
+ collar
2331
+ area
2332
+ meeting room
2333
+ circus
2334
+ yogurt
2335
+ orangutan
2336
+ viaduct
2337
+ comedian
2338
+ drone
2339
+ scissor
2340
+ pop rock artist
2341
+ biscuit
2342
+ panda
2343
+ water feature
2344
+ air balloon
2345
+ remote control
2346
+ watercolor painting
2347
+ show
2348
+ walk
2349
+ post office
2350
+ bike path
2351
+ rap gangsta artist
2352
+ microphone
2353
+ crack
2354
+ sunset sky
2355
+ glass
2356
+ tv show
2357
+ cartoon style
2358
+ stripe
2359
+ foyer
2360
+ signal
2361
+ calligraphy
2362
+ bulb
2363
+ gardener
2364
+ coffee bean
2365
+ spider
2366
+ tapestry
2367
+ city skyline
2368
+ necklace
2369
+ kitten
2370
+ traveler
2371
+ veteran
2372
+ frosting
2373
+ fry
2374
+ tennis court
2375
+ tank top
2376
+ butterfly house
2377
+ mist
2378
+ drummer
2379
+ water level
2380
+ scale
2381
+ baseball glove
2382
+ music video performer
2383
+ champagne
2384
+ camping
2385
+ clothing
2386
+ water drop
2387
+ telephone box
2388
+ pen
2389
+ morning mist
2390
+ fire engine
2391
+ porch
2392
+ opening ceremony
2393
+ style
2394
+ palm tree
2395
+ fashion show
2396
+ universe
2397
+ scratch
2398
+ axe
2399
+ ottoman
2400
+ explosion
2401
+ rib
2402
+ boutique
2403
+ game
2404
+ cucumber
2405
+ fruit
2406
+ stone bridge
2407
+ nature reserve
2408
+ track
2409
+ train window
2410
+ punch
2411
+ telephone pole
2412
+ velvet
2413
+ sauce
2414
+ moon
2415
+ contrast
2416
+ flamingo
2417
+ bat
2418
+ vending machine
2419
+ ship
2420
+ equestrian
2421
+ shade
2422
+ comforter
2423
+ pallet
2424
+ sparrow
2425
+ wii
2426
+ glaze
2427
+ grocery
2428
+ steeple
2429
+ soccer player
2430
+ contract
2431
+ advertising
2432
+ runner
2433
+ chimpanzee
2434
+ world
2435
+ seat
2436
+ project
2437
+ chihuahua
2438
+ bubble
2439
+ willow
2440
+ pedestal
2441
+ soul hip hop artist
2442
+ curb
2443
+ drawer
2444
+ leaf
2445
+ banner
2446
+ launch party
2447
+ coach
2448
+ government
2449
+ snowball
2450
+ toy
2451
+ portrait
2452
+ doctor
2453
+ whiteboard
2454
+ electronic
2455
+ tiger
2456
+ graffiti
2457
+ column
2458
+ nightstand
2459
+ whistle
2460
+ maxi dress
2461
+ bench
2462
+ wetsuit
2463
+ bird feeder
2464
+ football game
2465
+ basketball
2466
+ class
2467
+ bathroom door
2468
+ store window
2469
+ text message
2470
+ wreath
2471
+ street view
2472
+ binocular
2473
+ pet
2474
+ facade
2475
+ drought
2476
+ lemon
2477
+ new year
2478
+ night view
2479
+ airplane window
2480
+ specie
2481
+ rule
2482
+ jaw
2483
+ wheat field
2484
+ diet
2485
+ pop artist
2486
+ habitat
2487
+ screenshot
2488
+ scoreboard
2489
+ shore
2490
+ mane
2491
+ quilt
2492
+ ski lift
2493
+ orchid
2494
+ turban
2495
+ christmas
2496
+ airport
2497
+ marina
2498
+ glass door
2499
+ glass bottle
2500
+ restaurant
2501
+ conductor
2502
+ logo
2503
+ sleep
2504
+ tape
2505
+ tomato
2506
+ river bank
2507
+ lilac
2508
+ tooth
2509
+ training
2510
+ pottery
2511
+ shop
2512
+ steam engine
2513
+ mason jar
2514
+ base
2515
+ procession
2516
+ border
2517
+ shoot
2518
+ footprint
2519
+ hotdog
2520
+ bull
2521
+ stocking
2522
+ recreation
2523
+ automobile model
2524
+ design
2525
+ country pop artist
2526
+ river
2527
+ retriever
2528
+ department store
2529
+ auditorium
2530
+ sport car
2531
+ supermarket
2532
+ belt
2533
+ cricket
2534
+ window box
2535
+ dress shirt
2536
+ letter
2537
+ residence
2538
+ megaphone
2539
+ pant
2540
+ wildfire
2541
+ bird nest
2542
+ crab
2543
+ swimsuit
2544
+ candle
2545
+ funeral
2546
+ mill
2547
+ national park
2548
+ plant
2549
+ cop
2550
+ power line
2551
+ perch
2552
+ blue
2553
+ finger
2554
+ ferris wheel
2555
+ globe
2556
+ skateboard
2557
+ helmet
2558
+ movie theater
2559
+ uniform
2560
+ hammer
2561
+ material
2562
+ kid
2563
+ well
2564
+ butterfly
2565
+ sideline
2566
+ fashion fall show
2567
+ planet earth
2568
+ lift
2569
+ male
2570
+ sauna
2571
+ gray
2572
+ flour
2573
+ sand sculpture
2574
+ program
2575
+ cabinet
2576
+ infant
2577
+ wheel
2578
+ aircraft model
2579
+ dough
2580
+ garlic
2581
+ skate
2582
+ arrow
2583
+ wrapping paper
2584
+ ripple
2585
+ lamp
2586
+ iron
2587
+ banknote
2588
+ beaver
2589
+ ferry
2590
+ courtyard
2591
+ bassist
2592
+ countryside
2593
+ steak
2594
+ comfort
2595
+ boxer
2596
+ laundry room
2597
+ campsite
2598
+ brick building
2599
+ golf
2600
+ subway
2601
+ headphone
2602
+ fort
2603
+ handbag
2604
+ drum
2605
+ flood
2606
+ saddle
2607
+ bass
2608
+ labyrinth
2609
+ needle
2610
+ sun ray
2611
+ app
2612
+ menu
2613
+ president
2614
+ cardigan
2615
+ dandelion
2616
+ wetland
2617
+ ice hockey player
2618
+ number
2619
+ city hall
2620
+ fishing
2621
+ portrait session
2622
+ pug
2623
+ key
2624
+ art print
2625
+ minister
2626
+ hurdle
2627
+ emergency
2628
+ painting artist
2629
+ flag pole
2630
+ evening
2631
+ purse
2632
+ recipe
2633
+ golf ball
2634
+ coloring book
2635
+ mountain peak
2636
+ senior
2637
+ holiday
2638
+ bud
2639
+ cousin
2640
+ pantry
2641
+ lap
2642
+ skin
2643
+ flag
2644
+ tissue paper
2645
+ ridge
2646
+ wire fence
2647
+ surfer
2648
+ climber
2649
+ photograph
2650
+ sewing machine
2651
+ cooler
2652
+ actress
2653
+ apple tree
2654
+ cancer
2655
+ starfish
2656
+ automobile make
2657
+ dumbbell
2658
+ brace
2659
+ tunnel
2660
+ window
2661
+ paint artist
2662
+ composition
2663
+ school student
2664
+ condo
2665
+ convertible
2666
+ cushion
2667
+ selfie
2668
+ territory
2669
+ guide
2670
+ tree
2671
+ court
2672
+ shrimp
2673
+ stone house
2674
+ dress
2675
+ eyelash
2676
+ juice
2677
+ broccoli
2678
+ chain
2679
+ tourism
2680
+ mountain top
2681
+ concept car
2682
+ film premiere
2683
+ light bulb
2684
+ cafeteria
2685
+ badge
2686
+ flower bed
2687
+ theater
2688
+ root
2689
+ racecar driver
2690
+ basketball boy game
2691
+ glove
2692
+ skyline
2693
+ wall
2694
+ glacier
2695
+ airport terminal
2696
+ bug
2697
+ trim
2698
+ railway station
2699
+ briefcase
2700
+ flat
2701
+ fountain
2702
+ person
2703
+ lane
2704
+ asparagus
2705
+ art
2706
+ lantern
2707
+ dishwasher
2708
+ director
2709
+ snake
2710
+ lecture
2711
+ game controller
2712
+ tree branch
2713
+ pub
2714
+ bathing suit
2715
+ queue
2716
+ belly
2717
+ poppy
2718
+ bow
2719
+ pitcher
2720
+ ice cream cone
2721
+ cave
2722
+ candy
2723
+ road bridge
2724
+ host
2725
+ traffic jam
2726
+ earring
2727
+ file
2728
+ foot
2729
+ watermark overlay stamp
2730
+ mailbox
2731
+ supercar
2732
+ railing
2733
+ bedroom
2734
+ seafood
2735
+ waffle
2736
+ bronze statue
2737
+ plan
2738
+ flow
2739
+ marble
2740
+ basketball game
2741
+ automobile
2742
+ scene
2743
+ cypress tree
2744
+ soldier
2745
+ skateboarder
2746
+ glass building
2747
+ cherry tree
2748
+ pump
2749
+ grain
2750
+ wildebeest
2751
+ loop
2752
+ frame
2753
+ bathtub
2754
+ saxophone
2755
+ diver
2756
+ stalk
2757
+ lily
2758
+ bead
2759
+ alley
2760
+ flock
2761
+ family room
2762
+ manufacturing
2763
+ pointer
2764
+ worker
2765
+ navy
2766
+ potato
2767
+ teacher
2768
+ photography
2769
+ dolly
2770
+ boardwalk
2771
+ water fountain
2772
+ athlete
2773
+ side dish
2774
+ bay
2775
+ ice hockey
2776
+ phone
2777
+ hero
2778
+ face
2779
+ gold medal
2780
+ blind
2781
+ swamp
2782
+ researcher
2783
+ swim
2784
+ meatball
2785
+ iguana
2786
+ leather jacket
2787
+ jellyfish
2788
+ site
2789
+ smoke
2790
+ traffic signal
2791
+ melon
2792
+ beetle
2793
+ calculator
2794
+ skirt
2795
+ plantation
2796
+ sculptor
2797
+ barrier
2798
+ catcher
2799
+ security guard
2800
+ sketch
2801
+ awning
2802
+ steering wheel
2803
+ mountain view
2804
+ bus stop
2805
+ pool
2806
+ leg
2807
+ spotlight
2808
+ apron
2809
+ mineral
2810
+ inlet
2811
+ sleeve
2812
+ torch
2813
+ emotion
2814
+ march
2815
+ police officer
2816
+ performance
2817
+ lamp post
2818
+ fishing boat
2819
+ summer
2820
+ presentation
2821
+ saucer
2822
+ suitcase
2823
+ supermodel
2824
+ goalkeeper
2825
+ shrub
2826
+ rock artist
2827
+ document
2828
+ beach house
2829
+ man
2830
+ blue artist
2831
+ cigar
2832
+ railroad track
2833
+ gown
2834
+ mosaic
2835
+ bungalow
2836
+ alphabet
2837
+ baseball field
2838
+ shed
2839
+ pedestrian
2840
+ rail
2841
+ soap
2842
+ kitchen counter
2843
+ dessert
2844
+ dunk
2845
+ blossom
2846
+ conversation
2847
+ fruit market
2848
+ glass jar
2849
+ military
2850
+ beer bottle
2851
+ photographer
2852
+ tennis racket
2853
+ competition
2854
+ escalator
2855
+ bell tower
2856
+ stilt
2857
+ ballerina
2858
+ television
2859
+ feather
2860
+ fence post
2861
+ rear
2862
+ dahlia
2863
+ red carpet
2864
+ tub
2865
+ hole
2866
+ fortress
2867
+ pack
2868
+ telephone
2869
+ cardboard
2870
+ city park
2871
+ platform
2872
+ college student
2873
+ arch bridge
2874
+ wind
2875
+ blender
2876
+ bloom
2877
+ ice rink
2878
+ birthday
2879
+ raven
2880
+ fairy
2881
+ embankment
2882
+ hall
2883
+ flower shop
2884
+ suburb
2885
+ barrel
2886
+ biker
2887
+ steam
2888
+ dragonfly
2889
+ formation
2890
+ electricity
2891
+ business people
2892
+ symmetry
2893
+ walkway
2894
+ fisherman
2895
+ gas mask
2896
+ loch
2897
+ youth
2898
+ hanger
2899
+ dot
2900
+ fish
2901
+ street market
2902
+ animation film
2903
+ crime fiction film
2904
+ boar
2905
+ emblem
2906
+ halloween costume
2907
+ kangaroo
2908
+ couple
2909
+ spoon
2910
+ squirrel
2911
+ neon sign
2912
+ sky
2913
+ office desk
2914
+ beauty salon
2915
+ breakwater
2916
+ fashion look
2917
+ toaster
2918
+ author
2919
+ news conference
2920
+ outdoor
2921
+ canoe
2922
+ dragon
2923
+ tool
2924
+ shopping centre
2925
+ ladybug
2926
+ swimming pool
2927
+ landscaping
2928
+ ski pole
2929
+ red
2930
+ truck
2931
+ fly
2932
+ temple
2933
+ level
2934
+ sunday
2935
+ railroad bridge
2936
+ car mirror
2937
+ lawn mower
2938
+ flute
2939
+ aircraft carrier
2940
+ fashion menswear london week
2941
+ sunshine
2942
+ tile floor
2943
+ skull
2944
+ fossil
2945
+ flower arrangement
2946
+ diaper
2947
+ sea turtle
2948
+ cherry blossom
2949
+ fireman
2950
+ shack
2951
+ lens
2952
+ waiter
2953
+ animal
2954
+ basement
2955
+ snow
2956
+ autumn park
2957
+ glass box
2958
+ kick
2959
+ head
2960
+ anniversary
2961
+ vine
2962
+ back
2963
+ paper lantern
2964
+ fish tank
2965
+ cellphone
2966
+ silk
2967
+ coral
2968
+ notebook
2969
+ photo
2970
+ gazebo
2971
+ ketchup
2972
+ driver
2973
+ farmer
2974
+ bonfire
2975
+ chestnut
2976
+ photoshoot
2977
+ football field
2978
+ olive tree
2979
+ pheasant
2980
+ sandal
2981
+ toilet
2982
+ fireplace
2983
+ music
2984
+ deity
2985
+ fish market
2986
+ fig
2987
+ bell
2988
+ neck
2989
+ grave
2990
+ villa
2991
+ cyclist
2992
+ crate
2993
+ grey
2994
+ asphalt road
2995
+ soccer
2996
+ hostel
2997
+ municipality
2998
+ courthouse
2999
+ roof
3000
+ end table
3001
+ pot
3002
+ sedan
3003
+ structure
3004
+ folk artist
3005
+ sport
3006
+ sport team
3007
+ protest
3008
+ syringe
3009
+ fashion designer
3010
+ jersey
3011
+ heart shape
3012
+ kayak
3013
+ stare
3014
+ sit with
3015
+ direct
3016
+ read
3017
+ photograph
3018
+ spin
3019
+ teach
3020
+ laugh
3021
+ carve
3022
+ grow on
3023
+ warm
3024
+ watch
3025
+ stretch
3026
+ smell
3027
+ decorate
3028
+ shine
3029
+ light
3030
+ dance
3031
+ send
3032
+ park
3033
+ chase
3034
+ collect
3035
+ lead
3036
+ kiss
3037
+ lead to
3038
+ lick
3039
+ smile
3040
+ cheer
3041
+ sit
3042
+ point
3043
+ block
3044
+ rock
3045
+ drop
3046
+ cut
3047
+ ski
3048
+ wrap
3049
+ lose
3050
+ serve
3051
+ provide
3052
+ sleep
3053
+ dress
3054
+ embrace
3055
+ burn
3056
+ pack
3057
+ stir
3058
+ create
3059
+ touch
3060
+ wash
3061
+ stick
3062
+ reveal
3063
+ shop
3064
+ train
3065
+ paint
3066
+ groom
3067
+ hunt
3068
+ bloom
3069
+ play
3070
+ pay
3071
+ brush
3072
+ shoot
3073
+ hold
3074
+ picture
3075
+ carry
3076
+ sip
3077
+ contain
3078
+ turn
3079
+ pour
3080
+ pitch
3081
+ give
3082
+ add
3083
+ blow
3084
+ look in
3085
+ show
3086
+ walk
3087
+ illuminate
3088
+ kneel
3089
+ cover
3090
+ drag
3091
+ post
3092
+ present
3093
+ fit
3094
+ operate
3095
+ fish
3096
+ race
3097
+ write
3098
+ deliver
3099
+ peel
3100
+ push
3101
+ run
3102
+ sit around
3103
+ buy
3104
+ jump
3105
+ walk on
3106
+ attend
3107
+ clean
3108
+ sell
3109
+ ride on
3110
+ mount
3111
+ host
3112
+ dry
3113
+ plant
3114
+ sing
3115
+ row
3116
+ shake
3117
+ perch
3118
+ ride
3119
+ fight
3120
+ skateboard
3121
+ live
3122
+ call
3123
+ surround
3124
+ practice
3125
+ play on
3126
+ work on
3127
+ step
3128
+ relax
3129
+ hit
3130
+ fall in
3131
+ flow
3132
+ greet
3133
+ launch
3134
+ wear
3135
+ hang on
3136
+ drive
3137
+ sit in
3138
+ break
3139
+ learn
3140
+ fly
3141
+ connect
3142
+ display
3143
+ locate
3144
+ compete
3145
+ go for
3146
+ sail
3147
+ lift
3148
+ toast
3149
+ help
3150
+ run on
3151
+ reflect
3152
+ pose
3153
+ scratch
3154
+ frame
3155
+ dribble
3156
+ herd
3157
+ enter
3158
+ exit
3159
+ place
3160
+ inspect
3161
+ build
3162
+ pick
3163
+ fill
3164
+ grind
3165
+ skate
3166
+ offer
3167
+ float
3168
+ sit by
3169
+ stand
3170
+ release
3171
+ rest
3172
+ singe
3173
+ climb
3174
+ tie
3175
+ mark
3176
+ lay
3177
+ stand around
3178
+ capture
3179
+ set
3180
+ land
3181
+ swinge
3182
+ run in
3183
+ kick
3184
+ lean
3185
+ head
3186
+ sign
3187
+ approach
3188
+ swim
3189
+ close
3190
+ crash
3191
+ control
3192
+ fall
3193
+ remove
3194
+ repair
3195
+ open
3196
+ appear
3197
+ travel
3198
+ load
3199
+ miss
3200
+ check
3201
+ surf
3202
+ moor
3203
+ smoke
3204
+ drink
3205
+ board
3206
+ seat
3207
+ feed
3208
+ rise
3209
+ sit on
3210
+ swing
3211
+ grow
3212
+ strike
3213
+ date
3214
+ slide
3215
+ share
3216
+ graze
3217
+ jump in
3218
+ lie
3219
+ extrude
3220
+ roll
3221
+ move
3222
+ gather
3223
+ eat
3224
+ pull
3225
+ run through
3226
+ squeeze
3227
+ lay on
3228
+ draw
3229
+ play with
3230
+ wave
3231
+ assemble
3232
+ perform
3233
+ march
3234
+ score
3235
+ attach
3236
+ adjust
3237
+ hang
3238
+ hug
3239
+ sleep on
3240
+ throw
3241
+ live in
3242
+ talk
3243
+ pet
3244
+ work
3245
+ run with
3246
+ see
3247
+ flip
3248
+ catch
3249
+ cook
3250
+ receive
3251
+ celebrate
3252
+ look
3253
+ classic
3254
+ bridal
3255
+ indoor
3256
+ industrial
3257
+ teenage
3258
+ mini
3259
+ grassy
3260
+ aged
3261
+ long
3262
+ warm
3263
+ light
3264
+ handsome
3265
+ happy
3266
+ three
3267
+ pregnant
3268
+ circular
3269
+ urban
3270
+ silver
3271
+ ceramic
3272
+ 3d
3273
+ green
3274
+ blonde
3275
+ golden
3276
+ dark
3277
+ tropical
3278
+ ripe
3279
+ deep
3280
+ fat
3281
+ musical
3282
+ giant
3283
+ medical
3284
+ medieval
3285
+ bare
3286
+ stunning
3287
+ bold
3288
+ geographical
3289
+ huge
3290
+ plastic
3291
+ foggy
3292
+ stormy
3293
+ gothic
3294
+ biological
3295
+ empty
3296
+ clear
3297
+ antique
3298
+ pink
3299
+ steep
3300
+ brown
3301
+ striped
3302
+ aerial
3303
+ rainy
3304
+ cool
3305
+ flying
3306
+ commercial
3307
+ purple
3308
+ trendy
3309
+ blank
3310
+ haired
3311
+ dead
3312
+ wooden
3313
+ flat
3314
+ high
3315
+ beige
3316
+ panoramic
3317
+ angry
3318
+ dozen
3319
+ rural
3320
+ solar
3321
+ big
3322
+ small
3323
+ stained
3324
+ thick
3325
+ many
3326
+ fresh
3327
+ clean
3328
+ strong
3329
+ abstract
3330
+ crowded
3331
+ retro
3332
+ dry
3333
+ gorgeous
3334
+ martial
3335
+ modern
3336
+ blue
3337
+ cloudy
3338
+ low
3339
+ four
3340
+ outdoor
3341
+ single
3342
+ much
3343
+ beautiful
3344
+ snowy
3345
+ pretty
3346
+ new
3347
+ short
3348
+ sunny
3349
+ closed
3350
+ rocky
3351
+ red
3352
+ two
3353
+ double
3354
+ male
3355
+ gray
3356
+ five
3357
+ colorful
3358
+ automotive
3359
+ various
3360
+ one
3361
+ old
3362
+ rusty
3363
+ tall
3364
+ wild
3365
+ narrow
3366
+ natural
3367
+ several
3368
+ frozen
3369
+ textured
3370
+ lush
3371
+ young
3372
+ hot
3373
+ mixed
3374
+ white
3375
+ float
3376
+ quiet
3377
+ round
3378
+ bright
3379
+ religious
3380
+ female
3381
+ historical
3382
+ shiny
3383
+ traditional
3384
+ tourist
3385
+ yellow
3386
+ bald
3387
+ coastal
3388
+ lovely
3389
+ little
3390
+ broken
3391
+ romantic
3392
+ wide
3393
+ royal
3394
+ rich
3395
+ open
3396
+ cute
3397
+ ancient
3398
+ cold
3399
+ political
3400
+ elderly
3401
+ gold
3402
+ full
3403
+ rustic
3404
+ metallic
3405
+ floral
3406
+ sad
3407
+ wet
3408
+ fancy
3409
+ senior
3410
+ tiny
3411
+ stylish
3412
+ large
3413
+ frosty
3414
+ orange
3415
+ transparent
3416
+ electronic
3417
+ shallow
3418
+ scared
3419
+ armed
3420
+ dirty
3421
+ historic
3422
+ black
3423
+ few
3424
+ windy
3425
+ some
3426
+ square
3427
+ ornamental
3428
+ sandy
3429
+ thin
data/textual_label_embedding.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe873d76eb8190eb7f60362a08904ebd2bab00b6e2af026c91f866d0e6a037bb
3
+ size 4695787
images/1641173_2291260800.jpg ADDED

Git LFS Details

  • SHA256: c562fea3659c4b112f71cfecb4a57143124b8b734e1ca96144bbdda734e494d4
  • Pointer size: 132 Bytes
  • Size of remote file: 1.81 MB
images/2800737_834897251.jpg ADDED
images/64891_194270823.jpg ADDED
images/COCO_val2014_000000483108.jpg ADDED
images/COCO_val2014_000000551338.jpg ADDED
images/bdf391a6f4b1840a.jpg ADDED
images/demo1.jpg ADDED

Git LFS Details

  • SHA256: 1b2906f4058a69936df49cb6156ec4cd117a286b420e1eb14764033bf8f3c05f
  • Pointer size: 132 Bytes
  • Size of remote file: 5.7 MB
images/demo2.jpg ADDED

Git LFS Details

  • SHA256: 5c5159bf7114d08967f95475176670043115b157bf700efa34190260cd917662
  • Pointer size: 132 Bytes
  • Size of remote file: 1.03 MB
images/demo3.jpg ADDED

Git LFS Details

  • SHA256: c562fea3659c4b112f71cfecb4a57143124b8b734e1ca96144bbdda734e494d4
  • Pointer size: 132 Bytes
  • Size of remote file: 1.81 MB
images/demo4.jpg ADDED
images/localization_and_recognition.jpg ADDED
images/ram_grounded_sam.jpg ADDED
images/tag2text_framework.png ADDED
images/tag2text_grounded_sam.jpg ADDED
models/__pycache__/med.cpython-37.pyc ADDED
Binary file (29.2 kB). View file
 
models/__pycache__/swin_transformer.cpython-37.pyc ADDED
Binary file (21.6 kB). View file
 
models/__pycache__/tag2text.cpython-37.pyc ADDED
Binary file (11.9 kB). View file
 
models/__pycache__/vit.cpython-37.pyc ADDED
Binary file (12.3 kB). View file
 
models/bert.py ADDED
@@ -0,0 +1,1035 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on huggingface code base
8
+ * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
+ '''
10
+
11
+ import math
12
+ import os
13
+ import warnings
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Tuple
16
+
17
+ import torch
18
+ from torch import Tensor, device, dtype, nn
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import CrossEntropyLoss
22
+ import torch.nn.functional as F
23
+
24
+ from transformers.activations import ACT2FN
25
+ from transformers.file_utils import (
26
+ ModelOutput,
27
+ )
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPoolingAndCrossAttentions,
31
+ CausalLMOutputWithCrossAttentions,
32
+ MaskedLMOutput,
33
+ MultipleChoiceModelOutput,
34
+ NextSentencePredictorOutput,
35
+ QuestionAnsweringModelOutput,
36
+ SequenceClassifierOutput,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import (
40
+ PreTrainedModel,
41
+ apply_chunking_to_forward,
42
+ find_pruneable_heads_and_indices,
43
+ prune_linear_layer,
44
+ )
45
+ from transformers.utils import logging
46
+ from transformers.models.bert.configuration_bert import BertConfig
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+
52
+ class BertEmbeddings_nopos(nn.Module):
53
+ """Construct the embeddings from word and position embeddings."""
54
+
55
+ def __init__(self, config):
56
+ super().__init__()
57
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
58
+ # self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
59
+
60
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
61
+ # any TensorFlow checkpoint file
62
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
63
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
64
+
65
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
66
+ # self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
67
+ # self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
68
+
69
+ self.config = config
70
+
71
+ def forward(
72
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
73
+ ):
74
+ if input_ids is not None:
75
+ input_shape = input_ids.size()
76
+ else:
77
+ input_shape = inputs_embeds.size()[:-1]
78
+
79
+ seq_length = input_shape[1]
80
+
81
+ # if position_ids is None:
82
+ # position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
83
+
84
+ if inputs_embeds is None:
85
+ inputs_embeds = self.word_embeddings(input_ids)
86
+
87
+ embeddings = inputs_embeds
88
+
89
+ # if self.position_embedding_type == "absolute":
90
+ # position_embeddings = self.position_embeddings(position_ids)
91
+ # # print('add position_embeddings!!!!')
92
+ # embeddings += position_embeddings
93
+ embeddings = self.LayerNorm(embeddings)
94
+ embeddings = self.dropout(embeddings)
95
+ return embeddings
96
+
97
+
98
+
99
+
100
+ class BertEmbeddings(nn.Module):
101
+ """Construct the embeddings from word and position embeddings."""
102
+
103
+ def __init__(self, config):
104
+ super().__init__()
105
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
106
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
107
+
108
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
109
+ # any TensorFlow checkpoint file
110
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
111
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
112
+
113
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
114
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
115
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
116
+
117
+ self.config = config
118
+
119
+ def forward(
120
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
121
+ ):
122
+ if input_ids is not None:
123
+ input_shape = input_ids.size()
124
+ else:
125
+ input_shape = inputs_embeds.size()[:-1]
126
+
127
+ seq_length = input_shape[1]
128
+
129
+ if position_ids is None:
130
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
131
+
132
+ if inputs_embeds is None:
133
+ inputs_embeds = self.word_embeddings(input_ids)
134
+
135
+ embeddings = inputs_embeds
136
+
137
+ if self.position_embedding_type == "absolute":
138
+ position_embeddings = self.position_embeddings(position_ids)
139
+ # print('add position_embeddings!!!!')
140
+ embeddings += position_embeddings
141
+ embeddings = self.LayerNorm(embeddings)
142
+ embeddings = self.dropout(embeddings)
143
+ return embeddings
144
+
145
+
146
+ class BertSelfAttention(nn.Module):
147
+ def __init__(self, config, is_cross_attention):
148
+ super().__init__()
149
+ self.config = config
150
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
151
+ raise ValueError(
152
+ "The hidden size (%d) is not a multiple of the number of attention "
153
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
154
+ )
155
+
156
+ self.num_attention_heads = config.num_attention_heads
157
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
158
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
159
+
160
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
161
+ if is_cross_attention:
162
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
163
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
164
+ else:
165
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
166
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
167
+
168
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
169
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
170
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
171
+ self.max_position_embeddings = config.max_position_embeddings
172
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
173
+ self.save_attention = False
174
+
175
+ def save_attn_gradients(self, attn_gradients):
176
+ self.attn_gradients = attn_gradients
177
+
178
+ def get_attn_gradients(self):
179
+ return self.attn_gradients
180
+
181
+ def save_attention_map(self, attention_map):
182
+ self.attention_map = attention_map
183
+
184
+ def get_attention_map(self):
185
+ return self.attention_map
186
+
187
+ def transpose_for_scores(self, x):
188
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
189
+ x = x.view(*new_x_shape)
190
+ return x.permute(0, 2, 1, 3)
191
+
192
+ def forward(
193
+ self,
194
+ hidden_states,
195
+ attention_mask=None,
196
+ head_mask=None,
197
+ encoder_hidden_states=None,
198
+ encoder_attention_mask=None,
199
+ past_key_value=None,
200
+ output_attentions=False,
201
+ ):
202
+ mixed_query_layer = self.query(hidden_states)
203
+
204
+ # If this is instantiated as a cross-attention module, the keys
205
+ # and values come from an encoder; the attention mask needs to be
206
+ # such that the encoder's padding tokens are not attended to.
207
+ is_cross_attention = encoder_hidden_states is not None
208
+
209
+ if is_cross_attention:
210
+ # print(self.key.weight.shape)
211
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
212
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
213
+ attention_mask = encoder_attention_mask
214
+ elif past_key_value is not None:
215
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
216
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
217
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
218
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
219
+ else:
220
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
221
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
222
+
223
+ query_layer = self.transpose_for_scores(mixed_query_layer)
224
+
225
+ past_key_value = (key_layer, value_layer)
226
+
227
+ # compatible with higher versions of transformers
228
+ if key_layer.shape[0] > query_layer.shape[0]:
229
+ key_layer = key_layer[:query_layer.shape[0], :, :, :]
230
+ attention_mask = attention_mask[:query_layer.shape[0], :, :]
231
+ value_layer = value_layer[:query_layer.shape[0], :, :, :]
232
+
233
+ # Take the dot product between "query" and "key" to get the raw attention scores.
234
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
235
+
236
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
237
+ seq_length = hidden_states.size()[1]
238
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
239
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
240
+ distance = position_ids_l - position_ids_r
241
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
242
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
243
+
244
+ if self.position_embedding_type == "relative_key":
245
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
246
+ attention_scores = attention_scores + relative_position_scores
247
+ elif self.position_embedding_type == "relative_key_query":
248
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
249
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
250
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
251
+
252
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
253
+ if attention_mask is not None:
254
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
255
+ attention_scores = attention_scores + attention_mask
256
+
257
+ # Normalize the attention scores to probabilities.
258
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
259
+
260
+ if is_cross_attention and self.save_attention:
261
+ self.save_attention_map(attention_probs)
262
+ attention_probs.register_hook(self.save_attn_gradients)
263
+
264
+ # This is actually dropping out entire tokens to attend to, which might
265
+ # seem a bit unusual, but is taken from the original Transformer paper.
266
+ attention_probs_dropped = self.dropout(attention_probs)
267
+
268
+ # Mask heads if we want to
269
+ if head_mask is not None:
270
+ attention_probs_dropped = attention_probs_dropped * head_mask
271
+
272
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
273
+
274
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
275
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
276
+ context_layer = context_layer.view(*new_context_layer_shape)
277
+
278
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
279
+
280
+ outputs = outputs + (past_key_value,)
281
+ return outputs
282
+
283
+
284
+ class BertSelfOutput(nn.Module):
285
+ def __init__(self, config):
286
+ super().__init__()
287
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
288
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
289
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
290
+
291
+ def forward(self, hidden_states, input_tensor):
292
+ hidden_states = self.dense(hidden_states)
293
+ hidden_states = self.dropout(hidden_states)
294
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
295
+ return hidden_states
296
+
297
+
298
+ class BertAttention(nn.Module):
299
+ def __init__(self, config, is_cross_attention=False):
300
+ super().__init__()
301
+ self.self = BertSelfAttention(config, is_cross_attention)
302
+ self.output = BertSelfOutput(config)
303
+ self.pruned_heads = set()
304
+
305
+ def prune_heads(self, heads):
306
+ if len(heads) == 0:
307
+ return
308
+ heads, index = find_pruneable_heads_and_indices(
309
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
310
+ )
311
+
312
+ # Prune linear layers
313
+ self.self.query = prune_linear_layer(self.self.query, index)
314
+ self.self.key = prune_linear_layer(self.self.key, index)
315
+ self.self.value = prune_linear_layer(self.self.value, index)
316
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
317
+
318
+ # Update hyper params and store pruned heads
319
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
320
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
321
+ self.pruned_heads = self.pruned_heads.union(heads)
322
+
323
+ def forward(
324
+ self,
325
+ hidden_states,
326
+ attention_mask=None,
327
+ head_mask=None,
328
+ encoder_hidden_states=None,
329
+ encoder_attention_mask=None,
330
+ past_key_value=None,
331
+ output_attentions=False,
332
+ ):
333
+ self_outputs = self.self(
334
+ hidden_states,
335
+ attention_mask,
336
+ head_mask,
337
+ encoder_hidden_states,
338
+ encoder_attention_mask,
339
+ past_key_value,
340
+ output_attentions,
341
+ )
342
+ attention_output = self.output(self_outputs[0], hidden_states)
343
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
344
+ return outputs
345
+
346
+
347
+ class BertIntermediate(nn.Module):
348
+ def __init__(self, config):
349
+ super().__init__()
350
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
351
+ if isinstance(config.hidden_act, str):
352
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
353
+ else:
354
+ self.intermediate_act_fn = config.hidden_act
355
+
356
+ def forward(self, hidden_states):
357
+ hidden_states = self.dense(hidden_states)
358
+ hidden_states = self.intermediate_act_fn(hidden_states)
359
+ return hidden_states
360
+
361
+
362
+ class BertOutput(nn.Module):
363
+ def __init__(self, config):
364
+ super().__init__()
365
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
366
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
367
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
368
+
369
+ def forward(self, hidden_states, input_tensor):
370
+ hidden_states = self.dense(hidden_states)
371
+ hidden_states = self.dropout(hidden_states)
372
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
373
+ return hidden_states
374
+
375
+
376
+ class BertLayer(nn.Module):
377
+ def __init__(self, config, layer_num):
378
+ super().__init__()
379
+ self.config = config
380
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
381
+ self.seq_len_dim = 1
382
+ self.attention = BertAttention(config)
383
+ self.layer_num = layer_num
384
+ if self.config.add_cross_attention:
385
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
386
+ self.intermediate = BertIntermediate(config)
387
+ self.output = BertOutput(config)
388
+
389
+ def forward(
390
+ self,
391
+ hidden_states,
392
+ attention_mask=None,
393
+ head_mask=None,
394
+ encoder_hidden_states=None,
395
+ encoder_attention_mask=None,
396
+ past_key_value=None,
397
+ output_attentions=False,
398
+ mode=None,
399
+ ):
400
+
401
+ if mode == 'tagging':
402
+
403
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
404
+
405
+ cross_attention_outputs = self.crossattention(
406
+ hidden_states,
407
+ attention_mask,
408
+ head_mask,
409
+ encoder_hidden_states,
410
+ encoder_attention_mask,
411
+ output_attentions=output_attentions,
412
+ )
413
+ attention_output = cross_attention_outputs[0]
414
+ outputs = cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
415
+
416
+ present_key_value = cross_attention_outputs[-1]
417
+
418
+ else:
419
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
420
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
421
+ self_attention_outputs = self.attention(
422
+ hidden_states,
423
+ attention_mask,
424
+ head_mask,
425
+ output_attentions=output_attentions,
426
+ past_key_value=self_attn_past_key_value,
427
+ )
428
+ attention_output = self_attention_outputs[0]
429
+
430
+ outputs = self_attention_outputs[1:-1]
431
+ present_key_value = self_attention_outputs[-1]
432
+
433
+ if mode=='multimodal':
434
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
435
+
436
+ cross_attention_outputs = self.crossattention(
437
+ attention_output,
438
+ attention_mask,
439
+ head_mask,
440
+ encoder_hidden_states,
441
+ encoder_attention_mask,
442
+ output_attentions=output_attentions,
443
+ )
444
+ attention_output = cross_attention_outputs[0]
445
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
446
+ layer_output = apply_chunking_to_forward(
447
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
448
+ )
449
+ outputs = (layer_output,) + outputs
450
+
451
+ outputs = outputs + (present_key_value,)
452
+
453
+ return outputs
454
+
455
+ def feed_forward_chunk(self, attention_output):
456
+ intermediate_output = self.intermediate(attention_output)
457
+ layer_output = self.output(intermediate_output, attention_output)
458
+ return layer_output
459
+
460
+
461
+ class BertEncoder(nn.Module):
462
+ def __init__(self, config):
463
+ super().__init__()
464
+ self.config = config
465
+ self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
466
+ self.gradient_checkpointing = False
467
+
468
+ def forward(
469
+ self,
470
+ hidden_states,
471
+ attention_mask=None,
472
+ head_mask=None,
473
+ encoder_hidden_states=None,
474
+ encoder_attention_mask=None,
475
+ past_key_values=None,
476
+ use_cache=None,
477
+ output_attentions=False,
478
+ output_hidden_states=False,
479
+ return_dict=True,
480
+ mode='multimodal',
481
+ ):
482
+ all_hidden_states = () if output_hidden_states else None
483
+ all_self_attentions = () if output_attentions else None
484
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
485
+
486
+ next_decoder_cache = () if use_cache else None
487
+
488
+ for i in range(self.config.num_hidden_layers):
489
+ layer_module = self.layer[i]
490
+ if output_hidden_states:
491
+ all_hidden_states = all_hidden_states + (hidden_states,)
492
+
493
+ layer_head_mask = head_mask[i] if head_mask is not None else None
494
+ past_key_value = past_key_values[i] if past_key_values is not None else None
495
+
496
+ if self.gradient_checkpointing and self.training:
497
+
498
+ if use_cache:
499
+ logger.warn(
500
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
501
+ )
502
+ use_cache = False
503
+
504
+ def create_custom_forward(module):
505
+ def custom_forward(*inputs):
506
+ return module(*inputs, past_key_value, output_attentions)
507
+
508
+ return custom_forward
509
+
510
+ layer_outputs = torch.utils.checkpoint.checkpoint(
511
+ create_custom_forward(layer_module),
512
+ hidden_states,
513
+ attention_mask,
514
+ layer_head_mask,
515
+ encoder_hidden_states,
516
+ encoder_attention_mask,
517
+ mode=mode,
518
+ )
519
+ else:
520
+ layer_outputs = layer_module(
521
+ hidden_states,
522
+ attention_mask,
523
+ layer_head_mask,
524
+ encoder_hidden_states,
525
+ encoder_attention_mask,
526
+ past_key_value,
527
+ output_attentions,
528
+ mode=mode,
529
+ )
530
+
531
+ hidden_states = layer_outputs[0]
532
+ if use_cache:
533
+ next_decoder_cache += (layer_outputs[-1],)
534
+ if output_attentions:
535
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
536
+
537
+ if output_hidden_states:
538
+ all_hidden_states = all_hidden_states + (hidden_states,)
539
+
540
+ if not return_dict:
541
+ return tuple(
542
+ v
543
+ for v in [
544
+ hidden_states,
545
+ next_decoder_cache,
546
+ all_hidden_states,
547
+ all_self_attentions,
548
+ all_cross_attentions,
549
+ ]
550
+ if v is not None
551
+ )
552
+ return BaseModelOutputWithPastAndCrossAttentions(
553
+ last_hidden_state=hidden_states,
554
+ past_key_values=next_decoder_cache,
555
+ hidden_states=all_hidden_states,
556
+ attentions=all_self_attentions,
557
+ cross_attentions=all_cross_attentions,
558
+ )
559
+
560
+
561
+ class BertPooler(nn.Module):
562
+ def __init__(self, config):
563
+ super().__init__()
564
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
565
+ self.activation = nn.Tanh()
566
+
567
+ def forward(self, hidden_states):
568
+ # We "pool" the model by simply taking the hidden state corresponding
569
+ # to the first token.
570
+ first_token_tensor = hidden_states[:, 0]
571
+ pooled_output = self.dense(first_token_tensor)
572
+ pooled_output = self.activation(pooled_output)
573
+ return pooled_output
574
+
575
+
576
+ class BertPredictionHeadTransform(nn.Module):
577
+ def __init__(self, config):
578
+ super().__init__()
579
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
580
+ if isinstance(config.hidden_act, str):
581
+ self.transform_act_fn = ACT2FN[config.hidden_act]
582
+ else:
583
+ self.transform_act_fn = config.hidden_act
584
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
585
+
586
+ def forward(self, hidden_states):
587
+ hidden_states = self.dense(hidden_states)
588
+ hidden_states = self.transform_act_fn(hidden_states)
589
+ hidden_states = self.LayerNorm(hidden_states)
590
+ return hidden_states
591
+
592
+
593
+ class BertLMPredictionHead(nn.Module):
594
+ def __init__(self, config):
595
+ super().__init__()
596
+ self.transform = BertPredictionHeadTransform(config)
597
+
598
+ # The output weights are the same as the input embeddings, but there is
599
+ # an output-only bias for each token.
600
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
601
+
602
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
603
+
604
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
605
+ self.decoder.bias = self.bias
606
+
607
+ def forward(self, hidden_states):
608
+ hidden_states = self.transform(hidden_states)
609
+ hidden_states = self.decoder(hidden_states)
610
+ return hidden_states
611
+
612
+
613
+ class BertOnlyMLMHead(nn.Module):
614
+ def __init__(self, config):
615
+ super().__init__()
616
+ self.predictions = BertLMPredictionHead(config)
617
+
618
+ def forward(self, sequence_output):
619
+ prediction_scores = self.predictions(sequence_output)
620
+ return prediction_scores
621
+
622
+
623
+ class BertPreTrainedModel(PreTrainedModel):
624
+ """
625
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
626
+ models.
627
+ """
628
+
629
+ config_class = BertConfig
630
+ base_model_prefix = "bert"
631
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
632
+
633
+ def _init_weights(self, module):
634
+ """ Initialize the weights """
635
+ if isinstance(module, (nn.Linear, nn.Embedding)):
636
+ # Slightly different from the TF version which uses truncated_normal for initialization
637
+ # cf https://github.com/pytorch/pytorch/pull/5617
638
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
639
+ elif isinstance(module, nn.LayerNorm):
640
+ module.bias.data.zero_()
641
+ module.weight.data.fill_(1.0)
642
+ if isinstance(module, nn.Linear) and module.bias is not None:
643
+ module.bias.data.zero_()
644
+
645
+
646
+ class BertModel(BertPreTrainedModel):
647
+ """
648
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
649
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
650
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
651
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
652
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
653
+ input to the forward pass.
654
+ """
655
+
656
+ def __init__(self, config, add_pooling_layer=True):
657
+ super().__init__(config)
658
+ self.config = config
659
+
660
+ self.embeddings = BertEmbeddings(config)
661
+
662
+ self.encoder = BertEncoder(config)
663
+
664
+ self.pooler = BertPooler(config) if add_pooling_layer else None
665
+
666
+ self.init_weights()
667
+
668
+
669
+ def get_input_embeddings(self):
670
+ return self.embeddings.word_embeddings
671
+
672
+ def set_input_embeddings(self, value):
673
+ self.embeddings.word_embeddings = value
674
+
675
+ def _prune_heads(self, heads_to_prune):
676
+ """
677
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
678
+ class PreTrainedModel
679
+ """
680
+ for layer, heads in heads_to_prune.items():
681
+ self.encoder.layer[layer].attention.prune_heads(heads)
682
+
683
+
684
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
685
+ """
686
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
687
+
688
+ Arguments:
689
+ attention_mask (:obj:`torch.Tensor`):
690
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
691
+ input_shape (:obj:`Tuple[int]`):
692
+ The shape of the input to the model.
693
+ device: (:obj:`torch.device`):
694
+ The device of the input to the model.
695
+
696
+ Returns:
697
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
698
+ """
699
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
700
+ # ourselves in which case we just need to make it broadcastable to all heads.
701
+ if attention_mask.dim() == 3:
702
+ extended_attention_mask = attention_mask[:, None, :, :]
703
+ elif attention_mask.dim() == 2:
704
+ # Provided a padding mask of dimensions [batch_size, seq_length]
705
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
706
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
707
+ if is_decoder:
708
+ batch_size, seq_length = input_shape
709
+
710
+ seq_ids = torch.arange(seq_length, device=device)
711
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
712
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
713
+ # causal and attention masks must have same type with pytorch version < 1.3
714
+ causal_mask = causal_mask.to(attention_mask.dtype)
715
+
716
+ if causal_mask.shape[1] < attention_mask.shape[1]:
717
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
718
+ causal_mask = torch.cat(
719
+ [
720
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
721
+ causal_mask,
722
+ ],
723
+ axis=-1,
724
+ )
725
+
726
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
727
+ else:
728
+ extended_attention_mask = attention_mask[:, None, None, :]
729
+ else:
730
+ raise ValueError(
731
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
732
+ input_shape, attention_mask.shape
733
+ )
734
+ )
735
+
736
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
737
+ # masked positions, this operation will create a tensor which is 0.0 for
738
+ # positions we want to attend and -10000.0 for masked positions.
739
+ # Since we are adding it to the raw scores before the softmax, this is
740
+ # effectively the same as removing these entirely.
741
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
742
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
743
+ return extended_attention_mask
744
+
745
+ def forward(
746
+ self,
747
+ input_ids=None,
748
+ attention_mask=None,
749
+ position_ids=None,
750
+ head_mask=None,
751
+ inputs_embeds=None,
752
+ encoder_embeds=None,
753
+ encoder_hidden_states=None,
754
+ encoder_attention_mask=None,
755
+ past_key_values=None,
756
+ use_cache=None,
757
+ output_attentions=None,
758
+ output_hidden_states=None,
759
+ return_dict=None,
760
+ is_decoder=False,
761
+ mode='multimodal',
762
+ ):
763
+ r"""
764
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
765
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
766
+ the model is configured as a decoder.
767
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
768
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
769
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
770
+ - 1 for tokens that are **not masked**,
771
+ - 0 for tokens that are **masked**.
772
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
773
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
774
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
775
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
776
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
777
+ use_cache (:obj:`bool`, `optional`):
778
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
779
+ decoding (see :obj:`past_key_values`).
780
+ """
781
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
782
+ output_hidden_states = (
783
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
784
+ )
785
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
786
+
787
+ if is_decoder:
788
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
789
+ else:
790
+ use_cache = False
791
+
792
+ if input_ids is not None and inputs_embeds is not None:
793
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
794
+ elif input_ids is not None:
795
+ input_shape = input_ids.size()
796
+ batch_size, seq_length = input_shape
797
+ device = input_ids.device
798
+ elif inputs_embeds is not None:
799
+ input_shape = inputs_embeds.size()[:-1]
800
+ batch_size, seq_length = input_shape
801
+ device = inputs_embeds.device
802
+ elif encoder_embeds is not None:
803
+ input_shape = encoder_embeds.size()[:-1]
804
+ batch_size, seq_length = input_shape
805
+ device = encoder_embeds.device
806
+ else:
807
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
808
+
809
+ # past_key_values_length
810
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
811
+
812
+ if attention_mask is None:
813
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
814
+
815
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
816
+ # ourselves in which case we just need to make it broadcastable to all heads.
817
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
818
+ device, is_decoder)
819
+
820
+ # If a 2D or 3D attention mask is provided for the cross-attention
821
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
822
+ if encoder_hidden_states is not None:
823
+ if type(encoder_hidden_states) == list:
824
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
825
+ else:
826
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
827
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
828
+
829
+ if type(encoder_attention_mask) == list:
830
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
831
+ elif encoder_attention_mask is None:
832
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
833
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
834
+ else:
835
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
836
+ else:
837
+ encoder_extended_attention_mask = None
838
+
839
+ # Prepare head mask if needed
840
+ # 1.0 in head_mask indicate we keep the head
841
+ # attention_probs has shape bsz x n_heads x N x N
842
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
843
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
844
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
845
+
846
+ if encoder_embeds is None:
847
+ embedding_output = self.embeddings(
848
+ input_ids=input_ids,
849
+ position_ids=position_ids,
850
+ inputs_embeds=inputs_embeds,
851
+ past_key_values_length=past_key_values_length,
852
+ )
853
+ else:
854
+ embedding_output = encoder_embeds
855
+
856
+ encoder_outputs = self.encoder(
857
+ embedding_output,
858
+ attention_mask=extended_attention_mask,
859
+ head_mask=head_mask,
860
+ encoder_hidden_states=encoder_hidden_states,
861
+ encoder_attention_mask=encoder_extended_attention_mask,
862
+ past_key_values=past_key_values,
863
+ use_cache=use_cache,
864
+ output_attentions=output_attentions,
865
+ output_hidden_states=output_hidden_states,
866
+ return_dict=return_dict,
867
+ mode=mode,
868
+ )
869
+ sequence_output = encoder_outputs[0]
870
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
871
+
872
+ if not return_dict:
873
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
874
+
875
+ return BaseModelOutputWithPoolingAndCrossAttentions(
876
+ last_hidden_state=sequence_output,
877
+ pooler_output=pooled_output,
878
+ past_key_values=encoder_outputs.past_key_values,
879
+ hidden_states=encoder_outputs.hidden_states,
880
+ attentions=encoder_outputs.attentions,
881
+ cross_attentions=encoder_outputs.cross_attentions,
882
+ )
883
+
884
+
885
+ class BertLMHeadModel(BertPreTrainedModel):
886
+
887
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
888
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
889
+
890
+ def __init__(self, config):
891
+ super().__init__(config)
892
+
893
+ self.bert = BertModel(config, add_pooling_layer=False)
894
+ self.cls = BertOnlyMLMHead(config)
895
+
896
+ self.init_weights()
897
+
898
+ def get_output_embeddings(self):
899
+ return self.cls.predictions.decoder
900
+
901
+ def set_output_embeddings(self, new_embeddings):
902
+ self.cls.predictions.decoder = new_embeddings
903
+
904
+ def forward(
905
+ self,
906
+ input_ids=None,
907
+ attention_mask=None,
908
+ position_ids=None,
909
+ head_mask=None,
910
+ inputs_embeds=None,
911
+ encoder_hidden_states=None,
912
+ encoder_attention_mask=None,
913
+ labels=None,
914
+ past_key_values=None,
915
+ use_cache=None,
916
+ output_attentions=None,
917
+ output_hidden_states=None,
918
+ return_dict=None,
919
+ return_logits=False,
920
+ is_decoder=True,
921
+ reduction='mean',
922
+ mode='multimodal',
923
+ ):
924
+ r"""
925
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
926
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
927
+ the model is configured as a decoder.
928
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
929
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
930
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
931
+ - 1 for tokens that are **not masked**,
932
+ - 0 for tokens that are **masked**.
933
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
934
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
935
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
936
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
937
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
938
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
939
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
940
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
941
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
942
+ use_cache (:obj:`bool`, `optional`):
943
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
944
+ decoding (see :obj:`past_key_values`).
945
+ Returns:
946
+ Example::
947
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
948
+ >>> import torch
949
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
950
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
951
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
952
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
953
+ >>> outputs = model(**inputs)
954
+ >>> prediction_logits = outputs.logits
955
+ """
956
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
957
+ if labels is not None:
958
+ use_cache = False
959
+
960
+ outputs = self.bert(
961
+ input_ids,
962
+ attention_mask=attention_mask,
963
+ position_ids=position_ids,
964
+ head_mask=head_mask,
965
+ inputs_embeds=inputs_embeds,
966
+ encoder_hidden_states=encoder_hidden_states,
967
+ encoder_attention_mask=encoder_attention_mask,
968
+ past_key_values=past_key_values,
969
+ use_cache=use_cache,
970
+ output_attentions=output_attentions,
971
+ output_hidden_states=output_hidden_states,
972
+ return_dict=return_dict,
973
+ is_decoder=is_decoder,
974
+ mode=mode,
975
+ )
976
+
977
+ sequence_output = outputs[0]
978
+ prediction_scores = self.cls(sequence_output)
979
+ # sequence_output.shape torch.Size([85, 30, 768])
980
+ # prediction_scores.shape torch.Size([85, 30, 30524])
981
+ # labels.shape torch.Size([85, 30])
982
+
983
+
984
+ if return_logits:
985
+ return prediction_scores[:, :-1, :].contiguous()
986
+
987
+ lm_loss = None
988
+ if labels is not None:
989
+ # we are doing next-token prediction; shift prediction scores and input ids by one
990
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
991
+ labels = labels[:, 1:].contiguous()
992
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
993
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
994
+ if reduction=='none':
995
+ lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
996
+
997
+ if not return_dict:
998
+ output = (prediction_scores,) + outputs[2:]
999
+ return ((lm_loss,) + output) if lm_loss is not None else output
1000
+
1001
+ return CausalLMOutputWithCrossAttentions(
1002
+ loss=lm_loss,
1003
+ logits=prediction_scores,
1004
+ past_key_values=outputs.past_key_values,
1005
+ hidden_states=outputs.hidden_states,
1006
+ attentions=outputs.attentions,
1007
+ cross_attentions=outputs.cross_attentions,
1008
+ )
1009
+
1010
+ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
1011
+ input_shape = input_ids.shape
1012
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1013
+ if attention_mask is None:
1014
+ attention_mask = input_ids.new_ones(input_shape)
1015
+
1016
+ # cut decoder_input_ids if past is used
1017
+ if past is not None:
1018
+ input_ids = input_ids[:, -1:]
1019
+
1020
+ return {
1021
+ "input_ids": input_ids,
1022
+ "attention_mask": attention_mask,
1023
+ "past_key_values": past,
1024
+ "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
1025
+ "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
1026
+ "is_decoder": True,
1027
+ }
1028
+
1029
+ def _reorder_cache(self, past, beam_idx):
1030
+ reordered_past = ()
1031
+ for layer_past in past:
1032
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1033
+ return reordered_past
1034
+
1035
+
models/swin_transformer.py ADDED
@@ -0,0 +1,654 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Swin Transformer
3
+ # Copyright (c) 2021 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Ze Liu
6
+ # --------------------------------------------------------
7
+
8
+ import numpy as np
9
+ from scipy import interpolate
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.utils.checkpoint as checkpoint
14
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
15
+
16
+
17
+ class Mlp(nn.Module):
18
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
19
+ super().__init__()
20
+ out_features = out_features or in_features
21
+ hidden_features = hidden_features or in_features
22
+ self.fc1 = nn.Linear(in_features, hidden_features)
23
+ self.act = act_layer()
24
+ self.fc2 = nn.Linear(hidden_features, out_features)
25
+ self.drop = nn.Dropout(drop)
26
+
27
+ def forward(self, x):
28
+ x = self.fc1(x)
29
+ x = self.act(x)
30
+ x = self.drop(x)
31
+ x = self.fc2(x)
32
+ x = self.drop(x)
33
+ return x
34
+
35
+
36
+ def window_partition(x, window_size):
37
+ """
38
+ Args:
39
+ x: (B, H, W, C)
40
+ window_size (int): window size
41
+
42
+ Returns:
43
+ windows: (num_windows*B, window_size, window_size, C)
44
+ """
45
+ B, H, W, C = x.shape
46
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
47
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
48
+ return windows
49
+
50
+
51
+ def window_reverse(windows, window_size, H, W):
52
+ """
53
+ Args:
54
+ windows: (num_windows*B, window_size, window_size, C)
55
+ window_size (int): Window size
56
+ H (int): Height of image
57
+ W (int): Width of image
58
+
59
+ Returns:
60
+ x: (B, H, W, C)
61
+ """
62
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
63
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
64
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
65
+ return x
66
+
67
+
68
+ class WindowAttention(nn.Module):
69
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
70
+ It supports both of shifted and non-shifted window.
71
+
72
+ Args:
73
+ dim (int): Number of input channels.
74
+ window_size (tuple[int]): The height and width of the window.
75
+ num_heads (int): Number of attention heads.
76
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
77
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
78
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
79
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
80
+ """
81
+
82
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
83
+
84
+ super().__init__()
85
+ self.dim = dim
86
+ self.window_size = window_size # Wh, Ww
87
+ self.num_heads = num_heads
88
+ head_dim = dim // num_heads
89
+ self.scale = qk_scale or head_dim ** -0.5
90
+
91
+ # define a parameter table of relative position bias
92
+ self.relative_position_bias_table = nn.Parameter(
93
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
94
+
95
+ # get pair-wise relative position index for each token inside the window
96
+ coords_h = torch.arange(self.window_size[0])
97
+ coords_w = torch.arange(self.window_size[1])
98
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
99
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
100
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
101
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
102
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
103
+ relative_coords[:, :, 1] += self.window_size[1] - 1
104
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
105
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
106
+ self.register_buffer("relative_position_index", relative_position_index)
107
+
108
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
109
+ self.attn_drop = nn.Dropout(attn_drop)
110
+ self.proj = nn.Linear(dim, dim)
111
+ self.proj_drop = nn.Dropout(proj_drop)
112
+
113
+ trunc_normal_(self.relative_position_bias_table, std=.02)
114
+ self.softmax = nn.Softmax(dim=-1)
115
+
116
+ def forward(self, x, mask=None):
117
+ """
118
+ Args:
119
+ x: input features with shape of (num_windows*B, N, C)
120
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
121
+ """
122
+ B_, N, C = x.shape
123
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
124
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
125
+
126
+ q = q * self.scale
127
+ attn = (q @ k.transpose(-2, -1))
128
+
129
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
130
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
131
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
132
+ attn = attn + relative_position_bias.unsqueeze(0)
133
+
134
+ if mask is not None:
135
+ nW = mask.shape[0]
136
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
137
+ attn = attn.view(-1, self.num_heads, N, N)
138
+ attn = self.softmax(attn)
139
+ else:
140
+ attn = self.softmax(attn)
141
+
142
+ attn = self.attn_drop(attn)
143
+
144
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
145
+ x = self.proj(x)
146
+ x = self.proj_drop(x)
147
+ return x
148
+
149
+ def extra_repr(self) -> str:
150
+ return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
151
+
152
+ def flops(self, N):
153
+ # calculate flops for 1 window with token length of N
154
+ flops = 0
155
+ # qkv = self.qkv(x)
156
+ flops += N * self.dim * 3 * self.dim
157
+ # attn = (q @ k.transpose(-2, -1))
158
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
159
+ # x = (attn @ v)
160
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
161
+ # x = self.proj(x)
162
+ flops += N * self.dim * self.dim
163
+ return flops
164
+
165
+
166
+ class SwinTransformerBlock(nn.Module):
167
+ r""" Swin Transformer Block.
168
+
169
+ Args:
170
+ dim (int): Number of input channels.
171
+ input_resolution (tuple[int]): Input resulotion.
172
+ num_heads (int): Number of attention heads.
173
+ window_size (int): Window size.
174
+ shift_size (int): Shift size for SW-MSA.
175
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
176
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
177
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
178
+ drop (float, optional): Dropout rate. Default: 0.0
179
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
180
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
181
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
182
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
183
+ """
184
+
185
+ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
186
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
187
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
188
+ super().__init__()
189
+ self.dim = dim
190
+ self.input_resolution = input_resolution
191
+ self.num_heads = num_heads
192
+ self.window_size = window_size
193
+ self.shift_size = shift_size
194
+ self.mlp_ratio = mlp_ratio
195
+ if min(self.input_resolution) <= self.window_size:
196
+ # if window size is larger than input resolution, we don't partition windows
197
+ self.shift_size = 0
198
+ self.window_size = min(self.input_resolution)
199
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
200
+
201
+ self.norm1 = norm_layer(dim)
202
+ self.attn = WindowAttention(
203
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
204
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
205
+
206
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
207
+ self.norm2 = norm_layer(dim)
208
+ mlp_hidden_dim = int(dim * mlp_ratio)
209
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
210
+
211
+ if self.shift_size > 0:
212
+ # calculate attention mask for SW-MSA
213
+ H, W = self.input_resolution
214
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
215
+ h_slices = (slice(0, -self.window_size),
216
+ slice(-self.window_size, -self.shift_size),
217
+ slice(-self.shift_size, None))
218
+ w_slices = (slice(0, -self.window_size),
219
+ slice(-self.window_size, -self.shift_size),
220
+ slice(-self.shift_size, None))
221
+ cnt = 0
222
+ for h in h_slices:
223
+ for w in w_slices:
224
+ img_mask[:, h, w, :] = cnt
225
+ cnt += 1
226
+
227
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
228
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
229
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
230
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
231
+ else:
232
+ attn_mask = None
233
+
234
+ self.register_buffer("attn_mask", attn_mask)
235
+
236
+ def forward(self, x):
237
+ H, W = self.input_resolution
238
+ B, L, C = x.shape
239
+ assert L == H * W, "input feature has wrong size"
240
+
241
+ shortcut = x
242
+ x = self.norm1(x)
243
+ x = x.view(B, H, W, C)
244
+
245
+ # cyclic shift
246
+ if self.shift_size > 0:
247
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
248
+ else:
249
+ shifted_x = x
250
+
251
+ # partition windows
252
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
253
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
254
+
255
+ # W-MSA/SW-MSA
256
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
257
+
258
+ # merge windows
259
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
260
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
261
+
262
+ # reverse cyclic shift
263
+ if self.shift_size > 0:
264
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
265
+ else:
266
+ x = shifted_x
267
+ x = x.view(B, H * W, C)
268
+
269
+ # FFN
270
+ x = shortcut + self.drop_path(x)
271
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
272
+
273
+ return x
274
+
275
+ def extra_repr(self) -> str:
276
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
277
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
278
+
279
+ def flops(self):
280
+ flops = 0
281
+ H, W = self.input_resolution
282
+ # norm1
283
+ flops += self.dim * H * W
284
+ # W-MSA/SW-MSA
285
+ nW = H * W / self.window_size / self.window_size
286
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
287
+ # mlp
288
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
289
+ # norm2
290
+ flops += self.dim * H * W
291
+ return flops
292
+
293
+
294
+ class PatchMerging(nn.Module):
295
+ r""" Patch Merging Layer.
296
+
297
+ Args:
298
+ input_resolution (tuple[int]): Resolution of input feature.
299
+ dim (int): Number of input channels.
300
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
301
+ """
302
+
303
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
304
+ super().__init__()
305
+ self.input_resolution = input_resolution
306
+ self.dim = dim
307
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
308
+ self.norm = norm_layer(4 * dim)
309
+
310
+ def forward(self, x):
311
+ """
312
+ x: B, H*W, C
313
+ """
314
+ H, W = self.input_resolution
315
+ B, L, C = x.shape
316
+ assert L == H * W, "input feature has wrong size"
317
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
318
+
319
+ x = x.view(B, H, W, C)
320
+
321
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
322
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
323
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
324
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
325
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
326
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
327
+
328
+ x = self.norm(x)
329
+ x = self.reduction(x)
330
+
331
+ return x
332
+
333
+ def extra_repr(self) -> str:
334
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
335
+
336
+ def flops(self):
337
+ H, W = self.input_resolution
338
+ flops = H * W * self.dim
339
+ flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
340
+ return flops
341
+
342
+
343
+ class BasicLayer(nn.Module):
344
+ """ A basic Swin Transformer layer for one stage.
345
+
346
+ Args:
347
+ dim (int): Number of input channels.
348
+ input_resolution (tuple[int]): Input resolution.
349
+ depth (int): Number of blocks.
350
+ num_heads (int): Number of attention heads.
351
+ window_size (int): Local window size.
352
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
353
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
354
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
355
+ drop (float, optional): Dropout rate. Default: 0.0
356
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
357
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
358
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
359
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
360
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
361
+ """
362
+
363
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
364
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
365
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
366
+
367
+ super().__init__()
368
+ self.dim = dim
369
+ self.input_resolution = input_resolution
370
+ self.depth = depth
371
+ self.use_checkpoint = use_checkpoint
372
+
373
+ # build blocks
374
+ self.blocks = nn.ModuleList([
375
+ SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
376
+ num_heads=num_heads, window_size=window_size,
377
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
378
+ mlp_ratio=mlp_ratio,
379
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
380
+ drop=drop, attn_drop=attn_drop,
381
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
382
+ norm_layer=norm_layer)
383
+ for i in range(depth)])
384
+
385
+ # patch merging layer
386
+ if downsample is not None:
387
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
388
+ else:
389
+ self.downsample = None
390
+
391
+ def forward(self, x):
392
+ for blk in self.blocks:
393
+ if self.use_checkpoint:
394
+ x = checkpoint.checkpoint(blk, x)
395
+ else:
396
+ x = blk(x)
397
+ if self.downsample is not None:
398
+ x = self.downsample(x)
399
+ return x
400
+
401
+ def extra_repr(self) -> str:
402
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
403
+
404
+ def flops(self):
405
+ flops = 0
406
+ for blk in self.blocks:
407
+ flops += blk.flops()
408
+ if self.downsample is not None:
409
+ flops += self.downsample.flops()
410
+ return flops
411
+
412
+
413
+ class PatchEmbed(nn.Module):
414
+ r""" Image to Patch Embedding
415
+
416
+ Args:
417
+ img_size (int): Image size. Default: 224.
418
+ patch_size (int): Patch token size. Default: 4.
419
+ in_chans (int): Number of input image channels. Default: 3.
420
+ embed_dim (int): Number of linear projection output channels. Default: 96.
421
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
422
+ """
423
+
424
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
425
+ super().__init__()
426
+ img_size = to_2tuple(img_size)
427
+ patch_size = to_2tuple(patch_size)
428
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
429
+ self.img_size = img_size
430
+ self.patch_size = patch_size
431
+ self.patches_resolution = patches_resolution
432
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
433
+
434
+ self.in_chans = in_chans
435
+ self.embed_dim = embed_dim
436
+
437
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
438
+ if norm_layer is not None:
439
+ self.norm = norm_layer(embed_dim)
440
+ else:
441
+ self.norm = None
442
+
443
+ def forward(self, x):
444
+ B, C, H, W = x.shape
445
+ # FIXME look at relaxing size constraints
446
+ assert H == self.img_size[0] and W == self.img_size[1], \
447
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
448
+ x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
449
+ if self.norm is not None:
450
+ x = self.norm(x)
451
+ return x
452
+
453
+ def flops(self):
454
+ Ho, Wo = self.patches_resolution
455
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
456
+ if self.norm is not None:
457
+ flops += Ho * Wo * self.embed_dim
458
+ return flops
459
+
460
+
461
+ class SwinTransformer(nn.Module):
462
+ r""" Swin Transformer
463
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
464
+ https://arxiv.org/pdf/2103.14030
465
+
466
+ Args:
467
+ img_size (int | tuple(int)): Input image size. Default 224
468
+ patch_size (int | tuple(int)): Patch size. Default: 4
469
+ in_chans (int): Number of input image channels. Default: 3
470
+ num_classes (int): Number of classes for classification head. Default: 1000
471
+ embed_dim (int): Patch embedding dimension. Default: 96
472
+ depths (tuple(int)): Depth of each Swin Transformer layer.
473
+ num_heads (tuple(int)): Number of attention heads in different layers.
474
+ window_size (int): Window size. Default: 7
475
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
476
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
477
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
478
+ drop_rate (float): Dropout rate. Default: 0
479
+ attn_drop_rate (float): Attention dropout rate. Default: 0
480
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
481
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
482
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
483
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
484
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
485
+ """
486
+
487
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
488
+ embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
489
+ window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
490
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
491
+ norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
492
+ use_checkpoint=False, **kwargs):
493
+ super().__init__()
494
+
495
+ self.num_classes = num_classes
496
+ self.num_layers = len(depths)
497
+ self.embed_dim = embed_dim
498
+ self.ape = ape
499
+ self.patch_norm = patch_norm
500
+ self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
501
+ self.mlp_ratio = mlp_ratio
502
+
503
+ # split image into non-overlapping patches
504
+ self.patch_embed = PatchEmbed(
505
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
506
+ norm_layer=norm_layer if self.patch_norm else None)
507
+ num_patches = self.patch_embed.num_patches
508
+ patches_resolution = self.patch_embed.patches_resolution
509
+ self.patches_resolution = patches_resolution
510
+
511
+ # absolute position embedding
512
+ if self.ape:
513
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
514
+ trunc_normal_(self.absolute_pos_embed, std=.02)
515
+
516
+ self.pos_drop = nn.Dropout(p=drop_rate)
517
+
518
+ # stochastic depth
519
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
520
+
521
+ # build layers
522
+ self.layers = nn.ModuleList()
523
+ for i_layer in range(self.num_layers):
524
+ layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
525
+ input_resolution=(patches_resolution[0] // (2 ** i_layer),
526
+ patches_resolution[1] // (2 ** i_layer)),
527
+ depth=depths[i_layer],
528
+ num_heads=num_heads[i_layer],
529
+ window_size=window_size,
530
+ mlp_ratio=self.mlp_ratio,
531
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
532
+ drop=drop_rate, attn_drop=attn_drop_rate,
533
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
534
+ norm_layer=norm_layer,
535
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
536
+ use_checkpoint=use_checkpoint)
537
+ self.layers.append(layer)
538
+
539
+ self.norm = norm_layer(self.num_features)
540
+ self.avgpool = nn.AdaptiveAvgPool1d(1)
541
+ # self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
542
+
543
+ self.apply(self._init_weights)
544
+
545
+ def _init_weights(self, m):
546
+ if isinstance(m, nn.Linear):
547
+ trunc_normal_(m.weight, std=.02)
548
+ if isinstance(m, nn.Linear) and m.bias is not None:
549
+ nn.init.constant_(m.bias, 0)
550
+ elif isinstance(m, nn.LayerNorm):
551
+ nn.init.constant_(m.bias, 0)
552
+ nn.init.constant_(m.weight, 1.0)
553
+
554
+ @torch.jit.ignore
555
+ def no_weight_decay(self):
556
+ return {'absolute_pos_embed'}
557
+
558
+ @torch.jit.ignore
559
+ def no_weight_decay_keywords(self):
560
+ return {'relative_position_bias_table'}
561
+
562
+ def forward(self, x, idx_to_group_img=None, image_atts=None, **kwargs):
563
+ x = self.patch_embed(x)
564
+ if self.ape:
565
+ x = x + self.absolute_pos_embed
566
+ x = self.pos_drop(x)
567
+
568
+ for layer in self.layers:
569
+ x = layer(x)
570
+
571
+ x = self.norm(x) # B L C
572
+
573
+ x_cls = self.avgpool(x.transpose(1, 2)) # B C 1
574
+
575
+ if idx_to_group_img is None:
576
+ return torch.cat([x_cls.transpose(1, 2), x], dim=1)
577
+ else:
578
+ x_bs = torch.gather(x, dim=0, index=idx_to_group_img.view(-1, 1, 1).expand(-1, x.shape[1], x.shape[2]))
579
+ weights = image_atts[:, 1:].unsqueeze(2) # B L 1
580
+ x_bs_cls = torch.sum((weights * x_bs).transpose(1, 2), dim=-1, keepdim=True) # B C 1
581
+ x_bs_cls = x_bs_cls / torch.sum(weights.transpose(1, 2), dim=-1, keepdim=True) # avgpool
582
+
583
+ return torch.cat([x_bs_cls.transpose(1, 2), x_bs], dim=1), \
584
+ torch.cat([x_cls.transpose(1, 2), x], dim=1)
585
+
586
+ def flops(self):
587
+ flops = 0
588
+ flops += self.patch_embed.flops()
589
+ for i, layer in enumerate(self.layers):
590
+ flops += layer.flops()
591
+ flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
592
+ flops += self.num_features * self.num_classes
593
+ return flops
594
+
595
+
596
+ def interpolate_relative_pos_embed(rel_pos_bias, dst_num_pos, param_name=''):
597
+ # from: https://github.com/microsoft/unilm/blob/8a0a1c1f4e7326938ea7580a00d56d7f17d65612/beit/run_class_finetuning.py#L348
598
+
599
+ # rel_pos_bias: relative_position_bias_table
600
+ src_num_pos, num_attn_heads = rel_pos_bias.size()
601
+
602
+ num_extra_tokens = 0
603
+ src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
604
+ dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
605
+ if src_size != dst_size:
606
+ print("Position interpolate %s from %dx%d to %dx%d" % (param_name, src_size, src_size, dst_size, dst_size))
607
+
608
+ # extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
609
+ # rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
610
+
611
+ def geometric_progression(a, r, n):
612
+ return a * (1.0 - r ** n) / (1.0 - r)
613
+
614
+ left, right = 1.01, 1.5
615
+ while right - left > 1e-6:
616
+ q = (left + right) / 2.0
617
+ gp = geometric_progression(1, q, src_size // 2)
618
+ if gp > dst_size // 2:
619
+ right = q
620
+ else:
621
+ left = q
622
+
623
+ # if q > 1.090307:
624
+ # q = 1.090307
625
+
626
+ dis = []
627
+ cur = 1
628
+ for i in range(src_size // 2):
629
+ dis.append(cur)
630
+ cur += q ** (i + 1)
631
+
632
+ r_ids = [-_ for _ in reversed(dis)]
633
+
634
+ x = r_ids + [0] + dis
635
+ y = r_ids + [0] + dis
636
+
637
+ t = dst_size // 2.0
638
+ dx = np.arange(-t, t + 0.1, 1.0)
639
+ dy = np.arange(-t, t + 0.1, 1.0)
640
+
641
+ # print("Original positions = %s" % str(x))
642
+ # print("Target positions = %s" % str(dx))
643
+
644
+ all_rel_pos_bias = []
645
+
646
+ for i in range(num_attn_heads):
647
+ z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
648
+ f = interpolate.interp2d(x, y, z, kind='cubic')
649
+ all_rel_pos_bias.append(
650
+ torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
651
+
652
+ rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
653
+
654
+ return rel_pos_bias
models/tag2text.py ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * The Recognize Anything Model (RAM) & Tag2Text Model
3
+ * Written by Xinyu Huang
4
+ '''
5
+ import numpy as np
6
+ import json
7
+ import torch
8
+ import warnings
9
+
10
+ from torch import nn
11
+ from models.bert import BertConfig, BertModel, BertLMHeadModel
12
+ from models.vit import VisionTransformer
13
+ from models.swin_transformer import SwinTransformer
14
+ from data.ram_tag_list_threshold import ram_class_threshold
15
+
16
+ from models.utils import *
17
+
18
+ warnings.filterwarnings("ignore")
19
+
20
+ class RAM(nn.Module):
21
+ def __init__(self,
22
+ med_config=f'{CONFIG_PATH}/configs/med_config.json',
23
+ image_size=384,
24
+ vit='base',
25
+ vit_grad_ckpt=False,
26
+ vit_ckpt_layer=0,
27
+ prompt='a picture of ',
28
+ threshold=0.68,
29
+ delete_tag_index=[],
30
+ tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt',
31
+ tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'):
32
+ r""" The Recognize Anything Model (RAM) inference module.
33
+ RAM is a strong image tagging model, which can recognize any common category with high accuracy.
34
+ Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/
35
+
36
+ Args:
37
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
38
+ image_size (int): input image size
39
+ vit (str): model size of vision transformer
40
+ threshold (int): tagging threshold
41
+ delete_tag_index (list): delete some tags that may disturb captioning
42
+ """
43
+ super().__init__()
44
+
45
+ # create image encoder
46
+ if vit == 'swin_b':
47
+ if image_size == 224:
48
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
49
+ elif image_size == 384:
50
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
51
+ vision_config = read_json(vision_config_path)
52
+ assert image_size == vision_config['image_res']
53
+ # assert config['patch_size'] == 32
54
+ vision_width = vision_config['vision_width']
55
+
56
+ self.visual_encoder = SwinTransformer(
57
+ img_size=vision_config['image_res'],
58
+ patch_size=4,
59
+ in_chans=3,
60
+ embed_dim=vision_config['embed_dim'],
61
+ depths=vision_config['depths'],
62
+ num_heads=vision_config['num_heads'],
63
+ window_size=vision_config['window_size'],
64
+ mlp_ratio=4.,
65
+ qkv_bias=True,
66
+ drop_rate=0.0,
67
+ drop_path_rate=0.1,
68
+ ape=False,
69
+ patch_norm=True,
70
+ use_checkpoint=False)
71
+
72
+ elif vit == 'swin_l':
73
+ if image_size == 224:
74
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
75
+ elif image_size == 384:
76
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
77
+ vision_config = read_json(vision_config_path)
78
+ assert image_size == vision_config['image_res']
79
+ # assert config['patch_size'] == 32
80
+ vision_width = vision_config['vision_width']
81
+
82
+ self.visual_encoder = SwinTransformer(
83
+ img_size=vision_config['image_res'],
84
+ patch_size=4,
85
+ in_chans=3,
86
+ embed_dim=vision_config['embed_dim'],
87
+ depths=vision_config['depths'],
88
+ num_heads=vision_config['num_heads'],
89
+ window_size=vision_config['window_size'],
90
+ mlp_ratio=4.,
91
+ qkv_bias=True,
92
+ drop_rate=0.0,
93
+ drop_path_rate=0.1,
94
+ ape=False,
95
+ patch_norm=True,
96
+ use_checkpoint=False)
97
+
98
+ else:
99
+ self.visual_encoder, vision_width = create_vit(
100
+ vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
101
+
102
+ # create tokenzier
103
+ self.tokenizer = init_tokenizer()
104
+
105
+ # Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
106
+ # create image-tag interaction encoder
107
+ encoder_config = BertConfig.from_json_file(med_config)
108
+ encoder_config.encoder_width = 512
109
+ self.tag_encoder = BertModel(config=encoder_config,
110
+ add_pooling_layer=False)
111
+
112
+ # create image-tag-text decoder
113
+ decoder_config = BertConfig.from_json_file(med_config)
114
+ self.text_decoder = BertLMHeadModel(config=decoder_config)
115
+
116
+ self.delete_tag_index = delete_tag_index
117
+ self.prompt = prompt
118
+ self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
119
+
120
+ # load tag list
121
+ self.tag_list = self.load_tag_list(tag_list)
122
+ self.tag_list_chinese = self.load_tag_list(tag_list_chinese)
123
+
124
+ # create image-tag recognition decoder
125
+ self.threshold = threshold
126
+ self.num_class = len(self.tag_list)
127
+ q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
128
+ q2l_config.encoder_width = 512
129
+ self.tagging_head = BertModel(config=q2l_config,
130
+ add_pooling_layer=False)
131
+ self.tagging_head.resize_token_embeddings(len(self.tokenizer))
132
+ self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
133
+
134
+ if q2l_config.hidden_size != 512:
135
+ self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size)
136
+ else:
137
+ self.wordvec_proj = nn.Identity()
138
+
139
+ self.fc = nn.Linear(q2l_config.hidden_size, 1)
140
+
141
+ self.del_selfattention()
142
+
143
+ # share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
144
+ tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
145
+ ' ')
146
+ self.image_proj = nn.Linear(vision_width, 512)
147
+ self.label_embed = nn.Parameter(torch.load('data/textual_label_embedding.pth',map_location='cpu').float())
148
+
149
+ # adjust thresholds for some tags
150
+ self.class_threshold = torch.ones(self.num_class) * self.threshold
151
+ for key,value in enumerate(ram_class_threshold):
152
+ self.class_threshold[key] = value
153
+
154
+ def load_tag_list(self, tag_list_file):
155
+ with open(tag_list_file, 'r', encoding="utf8") as f:
156
+ tag_list = f.read().splitlines()
157
+ tag_list = np.array(tag_list)
158
+ return tag_list
159
+
160
+ # delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
161
+ def del_selfattention(self):
162
+ del self.tagging_head.embeddings
163
+ for layer in self.tagging_head.encoder.layer:
164
+ del layer.attention
165
+
166
+ def generate_tag(self,
167
+ image,
168
+ threshold=0.68,
169
+ tag_input=None,
170
+ ):
171
+
172
+ label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed))
173
+
174
+ image_embeds = self.image_proj(self.visual_encoder(image))
175
+ image_atts = torch.ones(image_embeds.size()[:-1],
176
+ dtype=torch.long).to(image.device)
177
+
178
+ # recognized image tags using image-tag recogntiion decoder
179
+ image_cls_embeds = image_embeds[:, 0, :]
180
+ image_spatial_embeds = image_embeds[:, 1:, :]
181
+
182
+ bs = image_spatial_embeds.shape[0]
183
+ label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
184
+ tagging_embed = self.tagging_head(
185
+ encoder_embeds=label_embed,
186
+ encoder_hidden_states=image_embeds,
187
+ encoder_attention_mask=image_atts,
188
+ return_dict=False,
189
+ mode='tagging',
190
+ )
191
+
192
+ logits = self.fc(tagging_embed[0]).squeeze(-1)
193
+
194
+ targets = torch.where(
195
+ torch.sigmoid(logits) > self.class_threshold.to(image.device),
196
+ torch.tensor(1.0).to(image.device),
197
+ torch.zeros(self.num_class).to(image.device))
198
+
199
+ tag = targets.cpu().numpy()
200
+ tag[:,self.delete_tag_index] = 0
201
+ tag_output = []
202
+ tag_output_chinese = []
203
+ for b in range(bs):
204
+ index = np.argwhere(tag[b] == 1)
205
+ token = self.tag_list[index].squeeze(axis=1)
206
+ tag_output.append(' | '.join(token))
207
+ token_chinese = self.tag_list_chinese[index].squeeze(axis=1)
208
+ tag_output_chinese.append(' | '.join(token_chinese))
209
+
210
+
211
+ return tag_output, tag_output_chinese
212
+
213
+
214
+ class Tag2Text_Caption(nn.Module):
215
+
216
+ def __init__(self,
217
+ med_config=f'{CONFIG_PATH}/configs/med_config.json',
218
+ image_size=384,
219
+ vit='base',
220
+ vit_grad_ckpt=False,
221
+ vit_ckpt_layer=0,
222
+ prompt='a picture of ',
223
+ threshold=0.68,
224
+ delete_tag_index=[127,2961, 3351, 3265, 3338, 3355, 3359],
225
+ tag_list=f'{CONFIG_PATH}/data/tag_list.txt'):
226
+ r""" Tag2Text inference module, both captioning and tagging are included.
227
+ Tag2Text is an efficient and controllable vision-language pre-training framework.
228
+ Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657
229
+
230
+ Args:
231
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
232
+ image_size (int): input image size
233
+ vit (str): model size of vision transformer
234
+ threshold (int): tagging threshold
235
+ delete_tag_index (list): delete some tags that may disturb captioning
236
+ """
237
+ super().__init__()
238
+
239
+ # create image encoder
240
+ if vit == 'swin_b':
241
+ if image_size == 224:
242
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
243
+ elif image_size == 384:
244
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
245
+ vision_config = read_json(vision_config_path)
246
+ assert image_size == vision_config['image_res']
247
+ # assert config['patch_size'] == 32
248
+ vision_width = vision_config['vision_width']
249
+
250
+ self.visual_encoder = SwinTransformer(
251
+ img_size=vision_config['image_res'],
252
+ patch_size=4,
253
+ in_chans=3,
254
+ embed_dim=vision_config['embed_dim'],
255
+ depths=vision_config['depths'],
256
+ num_heads=vision_config['num_heads'],
257
+ window_size=vision_config['window_size'],
258
+ mlp_ratio=4.,
259
+ qkv_bias=True,
260
+ drop_rate=0.0,
261
+ drop_path_rate=0.1,
262
+ ape=False,
263
+ patch_norm=True,
264
+ use_checkpoint=False)
265
+
266
+ else:
267
+ self.visual_encoder, vision_width = create_vit(
268
+ vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
269
+
270
+ # create tokenzier
271
+ self.tokenizer = init_tokenizer()
272
+
273
+ # Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
274
+ # create image-tag interaction encoder
275
+ encoder_config = BertConfig.from_json_file(med_config)
276
+ encoder_config.encoder_width = vision_width
277
+ self.tag_encoder = BertModel(config=encoder_config,
278
+ add_pooling_layer=False)
279
+
280
+ # create image-tag-text decoder
281
+ decoder_config = BertConfig.from_json_file(med_config)
282
+ self.text_decoder = BertLMHeadModel(config=decoder_config)
283
+
284
+ # delete some tags that may disturb captioning
285
+ # 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
286
+ self.delete_tag_index = delete_tag_index
287
+ self.prompt = prompt
288
+ self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
289
+
290
+ # load tag list
291
+ self.tag_list = self.load_tag_list(tag_list)
292
+
293
+ # create image-tag recognition decoder
294
+ self.threshold = threshold
295
+ self.num_class = len(self.tag_list)
296
+ q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
297
+ q2l_config.encoder_width = vision_width
298
+ self.tagging_head = BertModel(config=q2l_config,
299
+ add_pooling_layer=False)
300
+ self.tagging_head.resize_token_embeddings(len(self.tokenizer))
301
+ self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
302
+ self.fc = GroupWiseLinear(self.num_class,
303
+ q2l_config.hidden_size,
304
+ bias=True)
305
+ self.del_selfattention()
306
+
307
+ # share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
308
+ tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
309
+ ' ')
310
+
311
+ # adjust thresholds for some tags
312
+ # default threshold: 0.68
313
+ # 2701: "person"; 2828: "man"; 1167: "woman";
314
+ tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7}
315
+ self.class_threshold = torch.ones(self.num_class) * self.threshold
316
+ for key,value in tag_thrshold.items():
317
+ self.class_threshold[key] = value
318
+
319
+ def load_tag_list(self, tag_list_file):
320
+ with open(tag_list_file, 'r') as f:
321
+ tag_list = f.read().splitlines()
322
+ tag_list = np.array(tag_list)
323
+ return tag_list
324
+
325
+ # delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
326
+ def del_selfattention(self):
327
+ del self.tagging_head.embeddings
328
+ for layer in self.tagging_head.encoder.layer:
329
+ del layer.attention
330
+
331
+ def generate(self,
332
+ image,
333
+ sample=False,
334
+ num_beams=3,
335
+ max_length=30,
336
+ min_length=10,
337
+ top_p=0.9,
338
+ repetition_penalty=1.0,
339
+ tag_input=None,
340
+ return_tag_predict=False):
341
+
342
+ image_embeds = self.visual_encoder(image)
343
+ image_atts = torch.ones(image_embeds.size()[:-1],
344
+ dtype=torch.long).to(image.device)
345
+
346
+ # if not user specified tags, recognized image tags using image-tag recogntiion decoder
347
+ if tag_input == None:
348
+ image_cls_embeds = image_embeds[:, 0, :]
349
+ image_spatial_embeds = image_embeds[:, 1:, :]
350
+
351
+ bs = image_spatial_embeds.shape[0]
352
+ label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
353
+ tagging_embed = self.tagging_head(
354
+ encoder_embeds=label_embed,
355
+ encoder_hidden_states=image_embeds,
356
+ encoder_attention_mask=image_atts,
357
+ return_dict=False,
358
+ mode='tagging',
359
+ )
360
+
361
+ logits = self.fc(tagging_embed[0])
362
+
363
+ targets = torch.where(
364
+ torch.sigmoid(logits) > self.class_threshold.to(image.device),
365
+ torch.tensor(1.0).to(image.device),
366
+ torch.zeros(self.num_class).to(image.device))
367
+
368
+ tag = targets.cpu().numpy()
369
+
370
+ # delete some tags that may disturb captioning
371
+ tag[:, self.delete_tag_index] = 0
372
+
373
+ tag_input = []
374
+ for b in range(bs):
375
+ index = np.argwhere(tag[b] == 1)
376
+ token = self.tag_list[index].squeeze(axis=1)
377
+ tag_input.append(' | '.join(token))
378
+
379
+ tag_output = tag_input
380
+
381
+ # beam search for text generation(default)
382
+ if not sample:
383
+ image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
384
+ tag_input_temp = []
385
+ for tag in tag_input:
386
+ for i in range(num_beams):
387
+ tag_input_temp.append(tag)
388
+ tag_input = tag_input_temp
389
+
390
+ image_atts = torch.ones(image_embeds.size()[:-1],
391
+ dtype=torch.long).to(image.device)
392
+
393
+ # tokenizer input tags
394
+ tag_input_tokenzier = self.tokenizer(tag_input,
395
+ padding='max_length',
396
+ truncation=True,
397
+ max_length=40,
398
+ return_tensors="pt").to(
399
+ image.device)
400
+ encoder_input_ids = tag_input_tokenzier.input_ids
401
+ encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
402
+
403
+ # put input tag into image-tag interaction encoder to interact with image embeddings
404
+ output_tagembedding = self.tag_encoder(
405
+ encoder_input_ids,
406
+ attention_mask=tag_input_tokenzier.attention_mask,
407
+ encoder_hidden_states=image_embeds,
408
+ encoder_attention_mask=image_atts,
409
+ return_dict=True,
410
+ )
411
+
412
+ # prompt trick for better captioning, followed BLIP
413
+ prompt = [self.prompt] * image.size(0)
414
+ input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
415
+ image.device)
416
+ input_ids[:, 0] = self.tokenizer.bos_token_id
417
+ input_ids = input_ids[:, :-1]
418
+
419
+ if sample:
420
+ # nucleus sampling
421
+ model_kwargs = {
422
+ "encoder_hidden_states": output_tagembedding.last_hidden_state,
423
+ "encoder_attention_mask": None
424
+ }
425
+ outputs = self.text_decoder.generate(
426
+ input_ids=input_ids,
427
+ max_length=max_length,
428
+ min_length=min_length,
429
+ do_sample=True,
430
+ top_p=top_p,
431
+ num_return_sequences=1,
432
+ eos_token_id=self.tokenizer.sep_token_id,
433
+ pad_token_id=self.tokenizer.pad_token_id,
434
+ repetition_penalty=1.1,
435
+ **model_kwargs)
436
+ else:
437
+ # beam search (default)
438
+ model_kwargs = {
439
+ "encoder_hidden_states": output_tagembedding.last_hidden_state,
440
+ "encoder_attention_mask": None
441
+ }
442
+ outputs = self.text_decoder.generate(
443
+ input_ids=input_ids,
444
+ max_length=max_length,
445
+ min_length=min_length,
446
+ num_beams=num_beams,
447
+ eos_token_id=self.tokenizer.sep_token_id,
448
+ pad_token_id=self.tokenizer.pad_token_id,
449
+ repetition_penalty=repetition_penalty,
450
+ **model_kwargs)
451
+
452
+ captions = []
453
+ for output in outputs:
454
+ caption = self.tokenizer.decode(output, skip_special_tokens=True)
455
+ captions.append(caption[len(self.prompt):])
456
+ if return_tag_predict == True:
457
+ return captions, tag_output
458
+ return captions
459
+
460
+
461
+ # load Tag2Text pretrained model parameters
462
+ def tag2text_caption(pretrained='', **kwargs):
463
+ model = Tag2Text_Caption(**kwargs)
464
+ if pretrained:
465
+ if kwargs['vit'] == 'swin_b':
466
+ model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
467
+ else:
468
+ model, msg = load_checkpoint(model, pretrained)
469
+ print('vit:', kwargs['vit'])
470
+ print('msg', msg)
471
+ return model
472
+
473
+
474
+ # load RAM pretrained model parameters
475
+ def ram(pretrained='', **kwargs):
476
+ model = RAM(**kwargs)
477
+ if pretrained:
478
+ if kwargs['vit'] == 'swin_b':
479
+ model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
480
+ elif kwargs['vit'] == 'swin_l':
481
+ model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs)
482
+ else:
483
+ model, msg = load_checkpoint(model, pretrained)
484
+ print('vit:', kwargs['vit'])
485
+ print('msg', msg)
486
+ return model
487
+
models/utils.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import torch
4
+ import math
5
+
6
+ from torch import nn
7
+ from typing import List
8
+ from transformers import BertTokenizer
9
+ from urllib.parse import urlparse
10
+ from timm.models.hub import download_cached_file
11
+ from models.vit import interpolate_pos_embed
12
+ from models.swin_transformer import interpolate_relative_pos_embed
13
+ from pathlib import Path
14
+ CONFIG_PATH=(Path(__file__).resolve().parents[1])
15
+
16
+ def read_json(rpath):
17
+ with open(rpath, 'r') as f:
18
+ return json.load(f)
19
+
20
+
21
+ def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,
22
+ base_model_prefix: str, skip_key: str):
23
+ uninitialized_encoder_weights: List[str] = []
24
+ if decoder.__class__ != encoder.__class__:
25
+ logger.info(
26
+ f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
27
+ )
28
+
29
+ def tie_encoder_to_decoder_recursively(
30
+ decoder_pointer: nn.Module,
31
+ encoder_pointer: nn.Module,
32
+ module_name: str,
33
+ uninitialized_encoder_weights: List[str],
34
+ skip_key: str,
35
+ depth=0,
36
+ ):
37
+ assert isinstance(decoder_pointer, nn.Module) and isinstance(
38
+ encoder_pointer, nn.Module
39
+ ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
40
+ if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
41
+ assert hasattr(encoder_pointer, "weight")
42
+ encoder_pointer.weight = decoder_pointer.weight
43
+ if hasattr(decoder_pointer, "bias"):
44
+ assert hasattr(encoder_pointer, "bias")
45
+ encoder_pointer.bias = decoder_pointer.bias
46
+ print(module_name + ' is tied')
47
+ return
48
+
49
+ encoder_modules = encoder_pointer._modules
50
+ decoder_modules = decoder_pointer._modules
51
+ if len(decoder_modules) > 0:
52
+ assert (
53
+ len(encoder_modules) > 0
54
+ ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
55
+
56
+ all_encoder_weights = set([
57
+ module_name + "/" + sub_name
58
+ for sub_name in encoder_modules.keys()
59
+ ])
60
+ encoder_layer_pos = 0
61
+ for name, module in decoder_modules.items():
62
+ if name.isdigit():
63
+ encoder_name = str(int(name) + encoder_layer_pos)
64
+ decoder_name = name
65
+ if not isinstance(
66
+ decoder_modules[decoder_name],
67
+ type(encoder_modules[encoder_name])) and len(
68
+ encoder_modules) != len(decoder_modules):
69
+ # this can happen if the name corresponds to the position in a list module list of layers
70
+ # in this case the decoder has added a cross-attention that the encoder does not have
71
+ # thus skip this step and subtract one layer pos from encoder
72
+ encoder_layer_pos -= 1
73
+ continue
74
+ elif name not in encoder_modules:
75
+ continue
76
+ elif depth > 500:
77
+ raise ValueError(
78
+ "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
79
+ )
80
+ else:
81
+ decoder_name = encoder_name = name
82
+ tie_encoder_to_decoder_recursively(
83
+ decoder_modules[decoder_name],
84
+ encoder_modules[encoder_name],
85
+ module_name + "/" + name,
86
+ uninitialized_encoder_weights,
87
+ skip_key,
88
+ depth=depth + 1,
89
+ )
90
+ all_encoder_weights.remove(module_name + "/" + encoder_name)
91
+
92
+ uninitialized_encoder_weights += list(all_encoder_weights)
93
+
94
+ # tie weights recursively
95
+ tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,
96
+ uninitialized_encoder_weights, skip_key)
97
+
98
+
99
+ class GroupWiseLinear(nn.Module):
100
+ # could be changed to:
101
+ # output = torch.einsum('ijk,zjk->ij', x, self.W)
102
+ # or output = torch.einsum('ijk,jk->ij', x, self.W[0])
103
+ def __init__(self, num_class, hidden_dim, bias=True):
104
+ super().__init__()
105
+ self.num_class = num_class
106
+ self.hidden_dim = hidden_dim
107
+ self.bias = bias
108
+
109
+ self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
110
+ if bias:
111
+ self.b = nn.Parameter(torch.Tensor(1, num_class))
112
+ self.reset_parameters()
113
+
114
+ def reset_parameters(self):
115
+ stdv = 1. / math.sqrt(self.W.size(2))
116
+ for i in range(self.num_class):
117
+ self.W[0][i].data.uniform_(-stdv, stdv)
118
+ if self.bias:
119
+ for i in range(self.num_class):
120
+ self.b[0][i].data.uniform_(-stdv, stdv)
121
+
122
+ def forward(self, x):
123
+ # x: B,K,d
124
+ x = (self.W * x).sum(-1)
125
+ if self.bias:
126
+ x = x + self.b
127
+ return x
128
+
129
+
130
+ def init_tokenizer():
131
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
132
+ tokenizer.add_special_tokens({'bos_token': '[DEC]'})
133
+ tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
134
+ tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
135
+ return tokenizer
136
+
137
+
138
+ def create_vit(vit,
139
+ image_size,
140
+ use_grad_checkpointing=False,
141
+ ckpt_layer=0,
142
+ drop_path_rate=0):
143
+
144
+ assert vit in ['base', 'large'], "vit parameter must be base or large"
145
+ if vit == 'base':
146
+ vision_width = 768
147
+ visual_encoder = VisionTransformer(
148
+ img_size=image_size,
149
+ patch_size=16,
150
+ embed_dim=vision_width,
151
+ depth=12,
152
+ num_heads=12,
153
+ use_grad_checkpointing=use_grad_checkpointing,
154
+ ckpt_layer=ckpt_layer,
155
+ drop_path_rate=0 or drop_path_rate)
156
+ elif vit == 'large':
157
+ vision_width = 1024
158
+ visual_encoder = VisionTransformer(
159
+ img_size=image_size,
160
+ patch_size=16,
161
+ embed_dim=vision_width,
162
+ depth=24,
163
+ num_heads=16,
164
+ use_grad_checkpointing=use_grad_checkpointing,
165
+ ckpt_layer=ckpt_layer,
166
+ drop_path_rate=0.1 or drop_path_rate)
167
+ return visual_encoder, vision_width
168
+
169
+
170
+ def is_url(url_or_filename):
171
+ parsed = urlparse(url_or_filename)
172
+ return parsed.scheme in ("http", "https")
173
+
174
+
175
+ def load_checkpoint(model, url_or_filename):
176
+ if is_url(url_or_filename):
177
+ cached_file = download_cached_file(url_or_filename,
178
+ check_hash=False,
179
+ progress=True)
180
+ checkpoint = torch.load(cached_file, map_location='cpu')
181
+ elif os.path.isfile(url_or_filename):
182
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
183
+ else:
184
+ raise RuntimeError('checkpoint url or path is invalid')
185
+
186
+ state_dict = checkpoint['model']
187
+
188
+ state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(
189
+ state_dict['visual_encoder.pos_embed'], model.visual_encoder)
190
+ if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
191
+ state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(
192
+ state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m)
193
+ for key in model.state_dict().keys():
194
+ if key in state_dict.keys():
195
+ if state_dict[key].shape != model.state_dict()[key].shape:
196
+ del state_dict[key]
197
+
198
+ msg = model.load_state_dict(state_dict, strict=False)
199
+ print('load checkpoint from %s' % url_or_filename)
200
+ return model, msg
201
+
202
+
203
+ def load_checkpoint_swinbase(model, url_or_filename, kwargs):
204
+ if kwargs['image_size'] == 224:
205
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
206
+ elif kwargs['image_size'] == 384:
207
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
208
+ window_size = read_json(vision_config_path)['window_size']
209
+ print('--------------')
210
+ print(url_or_filename)
211
+ print('--------------')
212
+ if is_url(url_or_filename):
213
+ cached_file = download_cached_file(url_or_filename,
214
+ check_hash=False,
215
+ progress=True)
216
+ checkpoint = torch.load(cached_file, map_location='cpu')
217
+ elif os.path.isfile(url_or_filename):
218
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
219
+ else:
220
+ raise RuntimeError('checkpoint url or path is invalid')
221
+
222
+ state_dict = checkpoint['model']
223
+
224
+ for k in list(state_dict.keys()):
225
+ if 'relative_position_bias_table' in k:
226
+ dst_num_pos = (2 * window_size - 1)**2
227
+ state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
228
+ dst_num_pos,
229
+ param_name=k)
230
+ elif ('relative_position_index' in k) or ('attn_mask' in k):
231
+ del state_dict[k]
232
+ elif "vision_multi" in k:
233
+ state_dict[k.replace("vision_multi",
234
+ "tagging_head")] = state_dict.pop(k)
235
+
236
+ msg = model.load_state_dict(state_dict, strict=False)
237
+ print('load checkpoint from %s' % url_or_filename)
238
+ return model, msg
239
+
240
+
241
+ def load_checkpoint_swinlarge(model, url_or_filename, kwargs):
242
+ if kwargs['image_size'] == 224:
243
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
244
+ elif kwargs['image_size'] == 384:
245
+ vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
246
+ window_size = read_json(vision_config_path)['window_size']
247
+ print('--------------')
248
+ print(url_or_filename)
249
+ print('--------------')
250
+ if is_url(url_or_filename):
251
+ cached_file = download_cached_file(url_or_filename,
252
+ check_hash=False,
253
+ progress=True)
254
+ checkpoint = torch.load(cached_file, map_location='cpu')
255
+ elif os.path.isfile(url_or_filename):
256
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
257
+ else:
258
+ raise RuntimeError('checkpoint url or path is invalid')
259
+
260
+ state_dict = checkpoint['model']
261
+
262
+ for k in list(state_dict.keys()):
263
+ if 'relative_position_bias_table' in k:
264
+ dst_num_pos = (2 * window_size - 1)**2
265
+ state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
266
+ dst_num_pos,
267
+ param_name=k)
268
+ elif ('relative_position_index' in k) or ('attn_mask' in k):
269
+ del state_dict[k]
270
+ elif "vision_multi" in k:
271
+ state_dict[k.replace("vision_multi",
272
+ "tagging_head")] = state_dict.pop(k)
273
+
274
+ msg = model.load_state_dict(state_dict, strict=False)
275
+ print('load checkpoint from %s' % url_or_filename)
276
+ return model, msg
277
+
278
+
models/vit.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on timm code base
8
+ * https://github.com/rwightman/pytorch-image-models/tree/master/timm
9
+ '''
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from functools import partial
15
+
16
+ from timm.models.vision_transformer import _cfg, PatchEmbed
17
+ from timm.models.registry import register_model
18
+ from timm.models.layers import trunc_normal_, DropPath
19
+ from timm.models.helpers import named_apply, adapt_input_conv
20
+
21
+ from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
22
+
23
+ class Mlp(nn.Module):
24
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks
25
+ """
26
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
27
+ super().__init__()
28
+ out_features = out_features or in_features
29
+ hidden_features = hidden_features or in_features
30
+ self.fc1 = nn.Linear(in_features, hidden_features)
31
+ self.act = act_layer()
32
+ self.fc2 = nn.Linear(hidden_features, out_features)
33
+ self.drop = nn.Dropout(drop)
34
+
35
+ def forward(self, x):
36
+ x = self.fc1(x)
37
+ x = self.act(x)
38
+ x = self.drop(x)
39
+ x = self.fc2(x)
40
+ x = self.drop(x)
41
+ return x
42
+
43
+
44
+ class Attention(nn.Module):
45
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
46
+ super().__init__()
47
+ self.num_heads = num_heads
48
+ head_dim = dim // num_heads
49
+ # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
50
+ self.scale = qk_scale or head_dim ** -0.5
51
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
52
+ self.attn_drop = nn.Dropout(attn_drop)
53
+ self.proj = nn.Linear(dim, dim)
54
+ self.proj_drop = nn.Dropout(proj_drop)
55
+ self.attn_gradients = None
56
+ self.attention_map = None
57
+
58
+ def save_attn_gradients(self, attn_gradients):
59
+ self.attn_gradients = attn_gradients
60
+
61
+ def get_attn_gradients(self):
62
+ return self.attn_gradients
63
+
64
+ def save_attention_map(self, attention_map):
65
+ self.attention_map = attention_map
66
+
67
+ def get_attention_map(self):
68
+ return self.attention_map
69
+
70
+ def forward(self, x, register_hook=False):
71
+ B, N, C = x.shape
72
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
73
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
74
+
75
+ attn = (q @ k.transpose(-2, -1)) * self.scale
76
+ attn = attn.softmax(dim=-1)
77
+ attn = self.attn_drop(attn)
78
+
79
+ if register_hook:
80
+ self.save_attention_map(attn)
81
+ attn.register_hook(self.save_attn_gradients)
82
+
83
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
84
+ x = self.proj(x)
85
+ x = self.proj_drop(x)
86
+ return x
87
+
88
+
89
+ class Block(nn.Module):
90
+
91
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
92
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
93
+ super().__init__()
94
+ self.norm1 = norm_layer(dim)
95
+ self.attn = Attention(
96
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
97
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
98
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
99
+ self.norm2 = norm_layer(dim)
100
+ mlp_hidden_dim = int(dim * mlp_ratio)
101
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
102
+
103
+ if use_grad_checkpointing:
104
+ self.attn = checkpoint_wrapper(self.attn)
105
+ self.mlp = checkpoint_wrapper(self.mlp)
106
+
107
+ def forward(self, x, register_hook=False):
108
+ x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
109
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
110
+ return x
111
+
112
+
113
+ class VisionTransformer(nn.Module):
114
+ """ Vision Transformer
115
+ A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
116
+ https://arxiv.org/abs/2010.11929
117
+ """
118
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
119
+ num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
120
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
121
+ use_grad_checkpointing=False, ckpt_layer=0):
122
+ """
123
+ Args:
124
+ img_size (int, tuple): input image size
125
+ patch_size (int, tuple): patch size
126
+ in_chans (int): number of input channels
127
+ num_classes (int): number of classes for classification head
128
+ embed_dim (int): embedding dimension
129
+ depth (int): depth of transformer
130
+ num_heads (int): number of attention heads
131
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
132
+ qkv_bias (bool): enable bias for qkv if True
133
+ qk_scale (float): override default qk scale of head_dim ** -0.5 if set
134
+ representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
135
+ drop_rate (float): dropout rate
136
+ attn_drop_rate (float): attention dropout rate
137
+ drop_path_rate (float): stochastic depth rate
138
+ norm_layer: (nn.Module): normalization layer
139
+ """
140
+ super().__init__()
141
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
142
+ norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
143
+
144
+ self.patch_embed = PatchEmbed(
145
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
146
+
147
+ num_patches = self.patch_embed.num_patches
148
+
149
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
150
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
151
+ self.pos_drop = nn.Dropout(p=drop_rate)
152
+
153
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
154
+ self.blocks = nn.ModuleList([
155
+ Block(
156
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
157
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
158
+ use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
159
+ )
160
+ for i in range(depth)])
161
+ self.norm = norm_layer(embed_dim)
162
+
163
+ trunc_normal_(self.pos_embed, std=.02)
164
+ trunc_normal_(self.cls_token, std=.02)
165
+ self.apply(self._init_weights)
166
+
167
+ def _init_weights(self, m):
168
+ if isinstance(m, nn.Linear):
169
+ trunc_normal_(m.weight, std=.02)
170
+ if isinstance(m, nn.Linear) and m.bias is not None:
171
+ nn.init.constant_(m.bias, 0)
172
+ elif isinstance(m, nn.LayerNorm):
173
+ nn.init.constant_(m.bias, 0)
174
+ nn.init.constant_(m.weight, 1.0)
175
+
176
+ @torch.jit.ignore
177
+ def no_weight_decay(self):
178
+ return {'pos_embed', 'cls_token'}
179
+
180
+ def forward(self, x, register_blk=-1):
181
+ B = x.shape[0]
182
+ x = self.patch_embed(x)
183
+
184
+ cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
185
+ x = torch.cat((cls_tokens, x), dim=1)
186
+
187
+ x = x + self.pos_embed[:,:x.size(1),:]
188
+ x = self.pos_drop(x)
189
+
190
+ for i,blk in enumerate(self.blocks):
191
+ x = blk(x, register_blk==i)
192
+ x = self.norm(x)
193
+
194
+ return x
195
+
196
+ @torch.jit.ignore()
197
+ def load_pretrained(self, checkpoint_path, prefix=''):
198
+ _load_weights(self, checkpoint_path, prefix)
199
+
200
+
201
+ @torch.no_grad()
202
+ def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
203
+ """ Load weights from .npz checkpoints for official Google Brain Flax implementation
204
+ """
205
+ import numpy as np
206
+
207
+ def _n2p(w, t=True):
208
+ if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
209
+ w = w.flatten()
210
+ if t:
211
+ if w.ndim == 4:
212
+ w = w.transpose([3, 2, 0, 1])
213
+ elif w.ndim == 3:
214
+ w = w.transpose([2, 0, 1])
215
+ elif w.ndim == 2:
216
+ w = w.transpose([1, 0])
217
+ return torch.from_numpy(w)
218
+
219
+ w = np.load(checkpoint_path)
220
+ if not prefix and 'opt/target/embedding/kernel' in w:
221
+ prefix = 'opt/target/'
222
+
223
+ if hasattr(model.patch_embed, 'backbone'):
224
+ # hybrid
225
+ backbone = model.patch_embed.backbone
226
+ stem_only = not hasattr(backbone, 'stem')
227
+ stem = backbone if stem_only else backbone.stem
228
+ stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
229
+ stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
230
+ stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
231
+ if not stem_only:
232
+ for i, stage in enumerate(backbone.stages):
233
+ for j, block in enumerate(stage.blocks):
234
+ bp = f'{prefix}block{i + 1}/unit{j + 1}/'
235
+ for r in range(3):
236
+ getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
237
+ getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
238
+ getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
239
+ if block.downsample is not None:
240
+ block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
241
+ block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
242
+ block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
243
+ embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
244
+ else:
245
+ embed_conv_w = adapt_input_conv(
246
+ model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
247
+ model.patch_embed.proj.weight.copy_(embed_conv_w)
248
+ model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
249
+ model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
250
+ pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
251
+ if pos_embed_w.shape != model.pos_embed.shape:
252
+ pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
253
+ pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
254
+ model.pos_embed.copy_(pos_embed_w)
255
+ model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
256
+ model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
257
+ # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
258
+ # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
259
+ # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
260
+ # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
261
+ # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
262
+ # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
263
+ for i, block in enumerate(model.blocks.children()):
264
+ block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
265
+ mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
266
+ block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
267
+ block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
268
+ block.attn.qkv.weight.copy_(torch.cat([
269
+ _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
270
+ block.attn.qkv.bias.copy_(torch.cat([
271
+ _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
272
+ block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
273
+ block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
274
+ for r in range(2):
275
+ getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
276
+ getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
277
+ block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
278
+ block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
279
+
280
+
281
+ def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
282
+ # interpolate position embedding
283
+ embedding_size = pos_embed_checkpoint.shape[-1]
284
+ num_patches = visual_encoder.patch_embed.num_patches
285
+ num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
286
+ # height (== width) for the checkpoint position embedding
287
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
288
+ # height (== width) for the new position embedding
289
+ new_size = int(num_patches ** 0.5)
290
+
291
+ if orig_size!=new_size:
292
+ # class_token and dist_token are kept unchanged
293
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
294
+ # only the position tokens are interpolated
295
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
296
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
297
+ pos_tokens = torch.nn.functional.interpolate(
298
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
299
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
300
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
301
+ print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
302
+
303
+ return new_pos_embed
304
+ else:
305
+ return pos_embed_checkpoint
ram_swin_large_14m.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15c729c793af28b9d107c69f85836a1356d76ea830d4714699fb62e55fcc08ed
3
+ size 5625634877
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ timm==0.4.12
2
+ transformers
3
+ fairscale==0.4.4
4
+ pycocoevalcap
5
+ torch
6
+ torchvision
7
+ Pillow
8
+ scipy
tag2text_swin_14m.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ce96f0ce98f940a6680d567f66a38ccc9ca8c4e638e5f5c5c2e881a0e3502ac
3
+ size 4478705095