File size: 4,564 Bytes
208053f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from typing import List, Dict, Optional, Union

import numpy as np
from datasets import Dataset, load_dataset
from easygoogletranslate import EasyGoogleTranslate
from langchain.prompts import PromptTemplate, FewShotPromptTemplate

LANGUAGE_TO_SUFFIX = {
    "chinese_simplified": "zh-CN",
    "french": "fr",
    "portuguese": "pt",
    "english": "en",
    "arabic": "ar",
    "hindi": "hi",
    "indonesian": "id",
    "amharic": "am",
    "bengali": "bn",
    "burmese": "my",
    "uzbek": "uz",
    "nepali": "ne",
    "japanese": "ja",
    "spanish": "es",
    "turkish": "tr",
    "persian": "fa",
    "azerbaijani": "az",
    "korean": "ko",
}

def choose_few_shot_examples(
        train_dataset: Dataset, few_shot_size: int, context: List[str], selection_criteria: str, lang: str,
) -> List[Dict[str, Union[str, int]]]:

    selected_examples = []

    example_idxs = []
    if selection_criteria == "first_k":
        example_idxs = list(range(few_shot_size))
    elif selection_criteria == "random":
        example_idxs = (
            np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
            .astype(int)
            .tolist()
        )

    ic_examples = [{'text': train_dataset[idx]['text'], 'summary': train_dataset[idx]['summary']} for idx in
                   example_idxs]

    for idx, ic_language in enumerate(context):
        selected_examples.append(ic_examples[idx]) if ic_language == lang else (
            selected_examples.append(
                _translate_example(example=ic_examples[idx], src_language=lang, target_language=ic_language)))

    return selected_examples


def _translate_instruction(basic_instruction: str, target_language: str) -> str:
    translator = EasyGoogleTranslate(
        source_language="en",
        target_language=LANGUAGE_TO_SUFFIX[target_language],
        timeout=50,
    )
    return translator.translate(basic_instruction)


def _translate_example(example: Dict[str, str], src_language: str, target_language: str):
    translator = EasyGoogleTranslate(source_language=LANGUAGE_TO_SUFFIX[src_language],
                                     target_language=LANGUAGE_TO_SUFFIX[target_language],
                                     timeout=30)
    try:
        return {'text': translator.translate(example['text']), 'summary': ''}
    except Exception as e:
        print(e)


def create_instruction(lang: str, expected_output: str):
    basic_instruction = (
        f"Write a summary of the given <Text> \n The output should be in {expected_output} "
        f"\n The output must be up to 2 sentences maximum!!!"
    )
    print(lang)
    return (
        basic_instruction
        if expected_output == "english"
        else _translate_instruction(basic_instruction, target_language=lang)
    )


def load_xlsum_data(lang, split, limit = 5):
    """Loads the xlsum dataset"""
    dataset = load_dataset("csebuetnlp/xlsum", lang)[split]
    return dataset.select(range(limit))


def construct_prompt(
    instruction: str,
    test_example: dict,
    zero_shot: bool,
    dataset: str,
    num_examples: int,
    lang: str,
    config: Dict[str, str],
):
    if not instruction:
        print(lang)
        instruction = create_instruction(lang, config['prefix'])

    example_prompt = PromptTemplate(
        input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
    )

    zero_shot_template = f"""{instruction}""" + "\n Input: {text} " ""

    test_data = load_xlsum_data(lang=lang, split="test", limit=100)

    print(test_data)
    print(num_examples)
    print(lang)
    ic_examples = []
    if not zero_shot:

        ic_examples = choose_few_shot_examples(
            train_dataset=test_data,
            few_shot_size=num_examples,
            context=[config["context"]] * num_examples,
            selection_criteria="random",
            lang=lang,
        )

    prompt = (
        FewShotPromptTemplate(
            examples=ic_examples,
            prefix=instruction,
            example_prompt=example_prompt,
            suffix="<Text>: {text}",
            input_variables=["text"],
        )
        if not zero_shot
        else PromptTemplate(input_variables=["text"], template=zero_shot_template)
    )

    print("lang", lang)
    print(config["input"] , lang)
    if config["input"] != lang:
        test_example = _translate_example(
            example=test_example, src_language=lang, target_language=config["input"]
        )

    print("test_example", prompt)
    return prompt.format(text=test_example["text"])