File size: 3,684 Bytes
208053f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from typing import List, Dict, Any

from easygoogletranslate import EasyGoogleTranslate
from langchain.prompts import PromptTemplate, FewShotPromptTemplate

LANGUAGE_TO_GOOGLE_TRANSLATE_MARK = {
    "english": "en",
    "bambara": "bm",
    "ewe": "ee",
    "hausa": "ha",
    "igbo": "ig",
    "kinyarwanda": "rw",
    "chichewa": "ny",
    "twi": "ak",
    "yoruba": "yo",
    "slovak": "sk",
    "serbian": "sr",
    "swedish": "sv",
    "vietnamese": "vi",
    "italian": "it",
    "portuguese": "pt",
    "chinese": "zh",
    "english": "en",
    "french": "fr"



}

LANGAUGE_TO_PREFIX = {
    "bambara": "bam",
    "ewe": "ewe",
    "fon": "fon",
    "hausa": "hau",
    "igbo": "ibo",
    "kinyarwanda": "kin",
    "chichewa": "nya",
    "twi": "twi",
    "yoruba": "yor",
    "slovak": "sk",
    "serbian": "sr",
    "swedish": "sv",
    "vietnamese": "vi",
    "italian": "it",
    "portuguese": "pt",
    "chinese": "zh",
    "english": "en",
    "french": "fr"
}


def _translate_instruction(basic_instruction: str, target_language: str) -> str:
    translator = EasyGoogleTranslate(
        source_language="en",
        target_language=LANGAUGE_TO_PREFIX[target_language],
        timeout=10,
    )
    return translator.translate(basic_instruction)


def create_instruction(lang: str, expected_output: str):
    basic_instruction = f"""You are an NLP assistant whose
                            purpose is to perform Named Entity Recognition
                            (NER). You will need to give each entity a tag, from the following:
                            PER means a person, ORG means organization.
                            LOC means a location entity.
                            The output should be a list of tuples of the format:
                            ['Tag: Entity', 'Tag: Entity'] for each entity in the sentence. 
                            The entities should be in {expected_output} language"""

    return (
        basic_instruction
        if lang == "english"
        else _translate_instruction(basic_instruction, target_language=lang)
    )

def construct_prompt(
    instruction: str,
    test_example: dict,
    zero_shot: bool,
    dataset: str,
    num_examples: int,
    lang: str,
    config: Dict[str, str],
):
    if not instruction:
        print(lang)
        instruction = create_instruction(lang, config['prefix'])

    example_prompt = PromptTemplate(
        input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
    )

    zero_shot_template = f"""{instruction}""" + "\n Input: {text} " ""

    test_data = load_xlsum_data(lang=lang, split="test", limit=100)

    print(test_data)
    print(num_examples)
    print(lang)
    ic_examples = []
    if not zero_shot:

        ic_examples = choose_few_shot_examples(
            train_dataset=test_data,
            few_shot_size=num_examples,
            context=[config["context"]] * num_examples,
            selection_criteria="random",
            lang=lang,
        )

    prompt = (
        FewShotPromptTemplate(
            examples=ic_examples,
            prefix=instruction,
            example_prompt=example_prompt,
            suffix="<Text>: {text}",
            input_variables=["text"],
        )
        if not zero_shot
        else PromptTemplate(input_variables=["text"], template=zero_shot_template)
    )

    print("lang", lang)
    print(config["input"] , lang)
    if config["input"] != lang:
        test_example = _translate_example(
            example=test_example, src_language=lang, target_language=config["input"]
        )

    print("test_example", prompt)
    return prompt.format(text=test_example["text"])