Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import os | |
| from pathlib import Path | |
| # import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline, StableDiffusionPipeline, schedulers | |
| import torch | |
| MODEL_REPO_ID = os.environ.get('MODEL_REPO_ID', 'myxlmynx/cyberrealistic_classic40') | |
| MODEL_REPO_LOCAL = os.environ.get('MODEL_REPO_LOCAL', '') | |
| MODEL_REPO_NAME = os.environ.get('MODEL_REPO_NAME', 'CyberRealistic Classic 4.0') | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print("Running on " + device) | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| print("Loading " + MODEL_REPO_ID) | |
| if MODEL_REPO_LOCAL and Path(MODEL_REPO_LOCAL).is_file(): | |
| pipe = StableDiffusionPipeline.from_single_file(MODEL_REPO_LOCAL, torch_dtype=torch_dtype) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype) | |
| extra_inference_parameters = {} | |
| # add accel LoRA to boost generation speed | |
| pipe.load_lora_weights("wangfuyun/PCM_Weights", | |
| subfolder='sd15', weight_name='pcm_sd15_smallcfg_2step_converted.safetensors', | |
| adapter_name='pcm_smallcfg_2step') | |
| pipe.set_adapters(['pcm_smallcfg_2step'], adapter_weights=[1.0]) | |
| pipe.fuse_lora() | |
| # for very low step counts with PCM | |
| #pipe.scheduler = schedulers.DDIMScheduler(timestep_spacing='trailing', | |
| # clip_sample=False, set_alpha_to_one=False) | |
| pipe.scheduler = schedulers.TCDScheduler() | |
| extra_inference_parameters['eta'] = 0.3 | |
| #pipe.scheduler = schedulers.LCMScheduler() | |
| #pipe.scheduler = schedulers.EulerAncestralDiscreteScheduler() | |
| # lib default will fry the image | |
| default_guidance_scale = 1 | |
| pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MIN_IMAGE_SIZE = 128 | |
| MAX_IMAGE_SIZE = 1024 | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if guidance_scale == 0: | |
| guidance_scale = default_guidance_scale | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| **extra_inference_parameters | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo_device: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# " + MODEL_REPO_NAME + " - on " + device.upper()) | |
| if device == 'cpu': | |
| gr.Markdown("Note: running on CPU, generation will be very slow. Expect at least" + | |
| " a minute for minimal parameters (512x512 image, guidance <= 1, <=4 steps).\n" + | |
| "It's also on a single queue, so clone this space for experimenting with it.") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=MIN_IMAGE_SIZE, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=MIN_IMAGE_SIZE, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=768, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=3, | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| demo_inference = gr.load(MODEL_REPO_ID, title=MODEL_REPO_NAME, src='models') | |
| demo = gr.TabbedInterface([demo_inference, demo_device], ["Inference API", device.upper()]) | |
| if __name__ == "__main__": | |
| demo.launch() | |