Spaces:
Runtime error
Runtime error
| from typing import Any, Dict, List | |
| import streamlit as st | |
| from langchain_core.outputs import LLMResult | |
| from streamlit.external.langchain import StreamlitCallbackHandler | |
| class ChatDataSelfQueryCallBack(StreamlitCallbackHandler): | |
| def __init__(self): | |
| super().__init__(st.container()) | |
| self._current_thought = None | |
| self.progress_bar = st.progress(value=0.0, text="Executing ChatData SelfQuery CallBack...") | |
| def on_llm_start( | |
| self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any | |
| ) -> None: | |
| self.progress_bar.progress(value=0.35, text="Communicate with LLM...") | |
| pass | |
| def on_chain_end(self, outputs, **kwargs) -> None: | |
| if len(kwargs['tags']) == 0: | |
| self.progress_bar.progress(value=0.75, text="Searching in DB...") | |
| def on_chain_start(self, serialized, inputs, **kwargs) -> None: | |
| pass | |
| def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: | |
| st.markdown("### Generate filter by LLM \n" | |
| "> Here we get `query_constructor` results \n\n") | |
| self.progress_bar.progress(value=0.5, text="Generate filter by LLM...") | |
| for item in response.generations: | |
| st.markdown(f"{item[0].text}") | |
| pass | |