Spaces:
Running
Running
File size: 6,759 Bytes
e931b70 c173a99 e931b70 c173a99 e931b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import base64
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.card import card
from streamlit_extras.colored_header import colored_header
from streamlit_extras.mention import mention
from streamlit_extras.tags import tagger_component
from logger import logger
import os
import streamlit as st
from auth0_component import login_button
from backend.constants.variables import JUMP_QUERY_ASK, USER_INFO, USER_NAME, DIVIDER_HTML, DIVIDER_THIN_HTML
from streamlit_extras.let_it_rain import rain
def render_home():
render_home_header()
# st.divider()
# st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True)
add_vertical_space(5)
render_home_content()
# st.divider()
st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True)
render_home_footer()
def render_home_header():
logger.info("render home header")
st.header("ChatData - Your Intelligent Assistant")
st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True)
st.markdown("> [ChatData](https://github.com/myscale/ChatData) \
is developed by [MyScale](https://myscale.com/), \
it's an integration of [LangChain](https://www.langchain.com/) \
and [MyScaleDB](https://github.com/myscale/myscaledb)")
tagger_component(
"Keywords:",
["MyScaleDB", "LangChain", "VectorSearch", "ChatBot", "GPT", "arxiv", "wikipedia", "Personal Knowledge Base π"],
color_name=["darkslateblue", "green", "orange", "darkslategrey", "red", "crimson", "darkcyan", "darkgrey"],
)
text, col1, col2, col3, _ = st.columns([1, 1, 1, 1, 4])
with text:
st.markdown("Related:")
with col1.container():
mention(
label="streamlit",
icon="streamlit",
url="https://streamlit.io/",
write=True
)
with col2.container():
mention(
label="langchain",
icon="π¦π",
url="https://www.langchain.com/",
write=True
)
with col3.container():
mention(
label="streamlit-extras",
icon="πͺ’",
url="https://github.com/arnaudmiribel/streamlit-extras",
write=True
)
def _render_self_query_chain_content():
col1, col2 = st.columns([1, 1], gap='large')
with col1.container():
st.image(image='./assets/home_page_background_1.png',
caption=None,
width=None,
use_column_width=True,
clamp=False,
channels="RGB",
output_format="PNG")
with col2.container():
st.header("VectorSearch & SelfQuery with Sources")
st.info("In this sample, you will learn how **LangChain** integrates with **MyScaleDB**.")
st.markdown("""This example demonstrates two methods for integrating MyScale into LangChain: [Vector SQL](https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html) and [Self-querying retriever](https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/). For each method, you can choose one of the following options:
1. `Retrieve from MyScaleDB β‘οΈ` - The LLM (GPT) converts user queries into SQL statements with vector search, executes these searches in MyScaleDB, and retrieves relevant content.
2. `Retrieve and answer with LLM β‘οΈ` - After retrieving relevant content from MyScaleDB, the user query along with the retrieved content is sent to the LLM (GPT), which then provides a comprehensive answer.""")
add_vertical_space(3)
_, middle, _ = st.columns([2, 1, 2], gap='small')
with middle.container():
st.session_state[JUMP_QUERY_ASK] = st.button("Try sample", use_container_width=False, type="secondary")
def _render_chat_bot_content():
col1, col2 = st.columns(2, gap='large')
with col1.container():
st.image(image='./assets/home_page_background_2.png',
caption=None,
width=None,
use_column_width=True,
clamp=False,
channels="RGB",
output_format="PNG")
with col2.container():
st.header("Chat Bot")
st.info("Now you can try our chatbot, this chatbot is built with MyScale and LangChain.")
st.markdown("- You need to log in. We use `user_name` to identify each customer.")
st.markdown("- You can upload your own PDF files and build your own knowledge base. \
(This is just a sample application. Please do not upload important or confidential files.)")
st.markdown("- A default session will be assigned as your initial chat session. \
You can create and switch to other sessions to jump between different chat conversations.")
add_vertical_space(1)
_, middle, _ = st.columns([1, 2, 1], gap='small')
with middle.container():
if USER_NAME not in st.session_state:
login_button(clientId=os.environ["AUTH0_CLIENT_ID"],
domain=os.environ["AUTH0_DOMAIN"],
key="auth0")
# if user_info:
# user_name = user_info.get("nickname", "default") + "_" + user_info.get("email", "null")
# st.session_state[USER_NAME] = user_name
# print(user_info)
def render_home_content():
logger.info("render home content")
_render_self_query_chain_content()
add_vertical_space(3)
_render_chat_bot_content()
def render_home_footer():
logger.info("render home footer")
st.write(
"Please follow us on [Twitter](https://x.com/myscaledb) and [Discord](https://discord.gg/D2qpkqc4Jq)!"
)
st.write(
"For more details, please refer to [our repository on GitHub](https://github.com/myscale/ChatData)!")
st.write("Our [privacy policy](https://myscale.com/privacy/), [terms of service](https://myscale.com/terms/)")
# st.write(
# "Recommended to use the standalone version of Chat-Data, "
# "available [here](https://myscale-chatdata.hf.space/)."
# )
if st.session_state.auth0 is not None:
st.session_state[USER_INFO] = dict(st.session_state.auth0)
if 'email' in st.session_state[USER_INFO]:
email = st.session_state[USER_INFO]["email"]
else:
email = f"{st.session_state[USER_INFO]['nickname']}@{st.session_state[USER_INFO]['sub']}"
st.session_state["user_name"] = email
del st.session_state.auth0
st.rerun()
if st.session_state.jump_query_ask:
st.rerun()
|