File size: 6,590 Bytes
79fe3d7 12f6654 79fe3d7 12f6654 79fe3d7 12f6654 79fe3d7 12f6654 79fe3d7 12f6654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen
from urllib.error import URLError
import re
from datetime import datetime
# Constants
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
# 开发环境
# DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/research-rank/research-data.REALTIME."
# DATA_URL_BASE = "./s1test"
# 生产环境
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME."
def find_latest_data_url():
"""Find the latest available data URL by trying different dates."""
today = datetime.now()
for i in range(365):
date = today.replace(day=today.day - i)
date_str = date.strftime("%Y%m%d")
url = f"{DATA_URL_BASE}{date_str}.json"
try:
urlopen(url)
return url, date_str
except URLError:
continue
breakpoint()
return None, None
def get_latest_data():
"""Get latest data URL and update time"""
data_url, update_time = find_latest_data_url()
if not data_url:
raise Exception("Could not find valid data URL")
formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d")
return data_url, formatted_update_time
def get_leaderboard_title(update_time):
return f"# Supported Datasets List (Last Updated: {update_time})"
MAIN_DESCRIPTION = """## The List of Datasets Supported by OpenCompass
Testing line.
- All configurations and datsets can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆.
"""
def load_data(data_url):
response = urlopen(data_url)
with open('s1.json','r',encoding='utf8') as f:
data = json.load(f)
return data
def build_main_table(data):
df = pd.DataFrame(data).transpose()
columns = {
'name': 'Name', 'category': 'Category', 'article': 'Article Address',
}
df = df[list(columns.keys())].rename(columns=columns)
return df
DATA_CATEGORY = ['med', 'law', 'code']
def filter_table1(df, data_category):
filtered_df = df.copy()
if data_category:
mask = pd.Series(False, index=filtered_df.index)
for category in data_category:
mask |= filtered_df['Category'] == category
filtered_df = filtered_df[mask]
return filtered_df
def calculate_column_widths(df):
column_widths = []
for column in df.columns:
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
width = max(header_length * 10, max_content_length * 8) + 20
width = max(160, min(400, width))
column_widths.append(width)
return column_widths
class DataState:
def __init__(self):
self.current_df = None
data_state = DataState()
def create_interface():
empty_df = pd.DataFrame(columns=[
'Name', 'Category', 'Article Address'
])
def load_initial_data():
try:
data_url, update_time = get_latest_data()
data = load_data(data_url)
new_df = build_main_table(data)
data_state.current_df = new_df
filtered_df = filter_table1(new_df, DATA_CATEGORY)
return get_leaderboard_title(update_time), filtered_df.sort_values("Name", ascending=True)
except Exception as e:
print(f"Error loading initial data: {e}")
return "# Supported Datasets List (Error loading data)", empty_df
def refresh_data():
try:
data_url, update_time = get_latest_data()
data = load_data(data_url)
new_df = build_main_table(data)
data_state.current_df = new_df
filtered_df = filter_table1(new_df, DATA_CATEGORY)
return get_leaderboard_title(update_time), filtered_df.sort_values("Name", ascending=True)
except Exception as e:
print(f"Error refreshing data: {e}")
return None, None
def update_table(category):
if data_state.current_df is None:
return empty_df
filtered_df = filter_table1(data_state.current_df, category)
return filtered_df.sort_values("Name", ascending=True)
initial_title, initial_data = load_initial_data()
with gr.Blocks() as demo:
title_comp = gr.Markdown(initial_title)
with gr.Tabs() as tabs:
with gr.TabItem("Dataset List", elem_id='main'):
gr.Markdown(MAIN_DESCRIPTION)
with gr.Row():
with gr.Column():
category_filter = gr.CheckboxGroup(
choices=DATA_CATEGORY,
value=DATA_CATEGORY,
label='Category',
interactive=True,
)
with gr.Column():
table = gr.DataFrame(
value=initial_data,
interactive=False,
wrap=False,
column_widths=calculate_column_widths(initial_data),
)
refresh_button = gr.Button("Refresh Data")
def refresh_and_update():
title, data = refresh_data()
return title, data
refresh_button.click(
fn=refresh_and_update,
outputs=[title_comp, table],
)
category_filter.change(
fn=update_table,
inputs=[category_filter],
outputs=table,
)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button',
lines=6, # 增加行数
max_lines=8, # 设置最大行数
show_copy_button=True # 添加复制按钮使其更方便使用
)
return demo
if __name__ == '__main__':
demo = create_interface()
demo.queue()
demo.launch(server_name='0.0.0.0') |