Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import AutoModelForSequenceClassification | |
# Load ONLY the model, NOT the tokenizer | |
model = AutoModelForSequenceClassification.from_pretrained( | |
"Kevintu/Engessay_grading_ML") | |
def process_embeddings(embeddings_array): | |
# Convert the received embeddings to the format expected by the model | |
embeddings_tensor = torch.tensor(embeddings_array) | |
# Process embeddings with the model | |
model.eval() | |
with torch.no_grad(): | |
# Create a dict with the expected input format | |
model_inputs = { | |
'input_ids': None, # Not needed since we're using embeddings directly | |
'attention_mask': None, # Not needed for this use case | |
'inputs_embeds': embeddings_tensor # Pass embeddings directly | |
} | |
outputs = model(**model_inputs) | |
predictions = outputs.logits.squeeze() | |
item_names = ["cohesion", "syntax", "vocabulary", | |
"phraseology", "grammar", "conventions"] | |
scaled_scores = 2.25 * predictions.numpy() - 1.25 | |
rounded_scores = [round(score * 2) / 2 for score in scaled_scores] | |
results = {item: f"{score:.1f}" for item, | |
score in zip(item_names, rounded_scores)} | |
return results | |
# Create Gradio interface for embeddings input | |
demo = gr.Interface( | |
fn=process_embeddings, | |
inputs=gr.JSON(label="Embeddings"), | |
outputs=gr.JSON(label="Scores"), | |
title="Essay Grading API (Embeddings Only)", | |
description="Grade essays based on precomputed embeddings" | |
) | |
demo.queue() | |
demo.launch() | |